1)
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам.
Т.е. AB₁ / B₁C = AB / BC = 8/4 = 2/1
Пусть B₁C = x, тогда AB₁ = 2x
x + 2x = 9
3x = 9
x = 3
B₁C = 3, <span>AB₁ = 6
AO - биссектриса, т.к. центр вписанной окружности - точка пересечения биссектрис.
</span>ΔABB₁: AB / AB₁ = BO / OB₁ = 8/6 = 4/3
2)
CO ·OD = AO · OB
CO = OD = x
x² = 4·25
x² = 100
x = 10
CD = 20
3)
ΔBMK подобен ΔDFK по двум углам (углы при вершине К равны как вертикальные, ∠КВМ = ∠KDF как соответственные)⇒
DK / KB = FD / BM = 1/2
Ном. 104
1)С=180-уголKAB=180-120=60;
ном.106
RQ+DM=RD+QM; RD=10cm
ном.107
уголRPK=180-110=70;PKM=70;
PRM=180-70=110.
........................................................
Ты должен(а) а ×б и ×м ты получишь свой ответ
1. Смежные углы<span> — это </span>углы<span>, у которых одна сторона — общая, а другие </span><span>стороны лежат на одной прямой.
2. </span>Медианой треугольника<span> называется отрезок, соединяющий любую вершину </span>треугольника <span>с серединой противоположной стороны.
4. </span>Прямая и окружность на плоскости могут :
а) пересекаться либо в 2 точках (тогда прямая называется секущей), либо в одной точке ( тогда прямая называется касательной);
<span>б) не пересекаться (не иметь общих точек).
6. </span><span>Центром является точка пересечения серединных перпендикуляров к сторонам треугольника. Серединный перпендикуляр — прямая, перпендикулярная к стороне треугольника и делящая ее на две равные части.
7.</span>Равнобедренный треугольник<span> — это </span>треугольник<span>, в котором две стороны равны между собой по длине. Боковые стороны(равные) и основание.
8. Треугольники равны между собой, если:
</span><span>a) две стороны и угол между ними; </span>
б) два угла и прилегающая к ним сторона;
<span>в) три стороны.
9. </span><span>Внешний угол треугольника — это угол, смежный с внутренним углом треугольника при этой вершине.
13. </span>Высота треугольника<span> — перпендикуляр, опущенный из вершины </span>треугольника<span> на противоположную сторону или прямую, совпадающую с противоположной стороной.
14. 360</span>°
15. <span>Две </span>прямые, образующие при пересечении прямые<span> углы, называют </span><span>перпендикулярными
16. Признак касательной: </span><span>Если прямая проходит через точку радиуса, лежащую на окружности, и прямая перпендикулярна этому радиусу, то прямая является касательной к данной окружности.</span>