1. a×b=20, a=d, b=h
S=пdh=3,14×20=62,8 см²
2. 1) S треугольника (соевого сечения) =½ аh => основание треугольника (диаметр конуса) = 0,6×2:0,1=12 см.
2) Найдём образующую конуса. Это гипотенуза в прямоугольном треугольнике. По теореме Пифагора:
l²=6²+0,1²
l²=36,01
3) Sбок=пrl=3,14×6×кореньиз36,01
S полная =Sбок+пr²=Sбок+3,14×36=Sбок+113,04
3. a=6=r
b=10=h
V=пr²h=3,14×36×10=1130,4 см³
Дано: ΔАВС, ВД - высота, АВ=4√6 см, СД=3 см, ∠АВД=30°.
Найти ВС.
Рассмотрим треугольник АВД - прямоугольный по свойству высоты,
АД=1\2 АВ как катет, лежащий против угла 30°, АД=2√6 см.
ВД²=АВ²-АД²=(4√6)²-(2√6)²=96-24=72
ВД=√72
ВС²=ВД²+СД²=(√72)²+9=72+9=81
ВС=√81=9
Ответ: 9 см.
BK - медіана, отже знайдемо AB за формулою медіани:
BK²=(2*BD²+2*АB²-AD²)/4, звідси знаходимо АВ і далі периметр.
Если мой ответ оказался полезен, смело отмечайте его как «лучший ответ».
Углы ВАМ и ВСМ<span>опираются на диаметр окружности и потому - прямые и равны 90°.</span>
Точкой пересечения хорды и диаметра радиус ВО делится на равные части. Поэтому в треугольнике ВАС <span>угол ВАС равен углу ВСА</span> и равен 30 градусам.
Отсюда угол АВС равен 120°, а угол АМС =60°.
Дуги<span>ВСМ и ВАМ равны по 180</span>°.
Дуга <span>ВАС</span> равна 120°, так как центральный угол, опирающийся на нее, равен 120° градусов, а вписанный АМС=60°.
Дуга<span> АВМ</span> вписанного угла АВС=120*2=240°.
Итак:
Углы
ВАМ и ВСМ=90°
АВС=120°
АМС=60°
Дуги
АВС=240°
ВАМ=АСМ=180°
АМС=120°