<span>Если проведём осевое сечение через апофему боковой грани, то получим прямоугольный треугольник OSE.
Катет этого треугольника ОЕ равен половине стороны основания.
Значит, ОЕ = 8/2 = 4 см, то есть, треугольник равнобедренный и угол при основании равен 45 градусов.
Он и есть искомый </span><span>угол, который образует боковая грань с плоскостью основания.</span>
<span>Дано: треугольник АВС, где угол С - прямой, АВ = 13 см, АС = 5 см,BC=12 Найти: S ABC.
</span><span>S ABC = 1/2 AC*BC </span><span>
</span><span>S ABC = 1/2 * 5 *12 = 30 см2
</span><span>Ответ: 30 см<span>2</span></span>
Дано:
тр. ABC
AB=BC
AD - бисс. угла A
угол BAD = углу DAC
AD=AC
Найти:
угол ABC - ?
Решение:
В тр. DAC AD=AC след-но угол ADC = ACD
Пусть угол ACD=x, тогда угол DAC=x/2 (AD бисс)
x/2+x+x=180
x/2+2x=180
5/2x=180
x=72
Значит углы при основании равны 72 градуса.
угол ABC = 180-72-72 = 36 гр.
Ответ:
<u>угол, противолежащий основанию равнобедренного тр. равен 36 градусов</u>
Успеешь переписать - здесь совсем мало
Проведем две высоты из вершин тупых углов на большее основание. Получим основание, разделенное на 3 части, две из которых равны, а третья вместе с высотами образует прямоугольник и равняется меньшей стороне.
Таким образом, меньшая часть основания равна (12-8)/2=2см
По теореме Пифагора находим высоту трапеции.
h=√10^2-2^2=√96=4<span>√6см
S=(8+12)/2*4</span>√6=40<span>√6см^2
Ответ: 40</span>√6