48/2=24
отрезок образует углы по 90 гр.
180-90-24= 66 (Е и С)
поэтому самый большой угол, это 90 гр
По теореме косинусов
5) Если О точка пересечений диагоналей ромба , то ВО = 6 , тогда ОС =
, то АС=2*8=16
9)
7) если ничего больше не дано кроме как стороны то не имеет решение , нужен хотя бы угол
3.
В основании пирамиды квадрат АВСD.
Рассмотрим прямоугольный треугольник FOC( FO⊥плоскости АВСD)
По теореме Пифагора
ОС=4 ( египетский прямоугольный треугольник)
АС=8
АС=BD=8
РN- средняя линия ΔАBD, поэтому PN=BD/2=4
AQ=QO=2 ( так как PN - средняя линия)
Рассмотрим прямоугольный треугольник FQO
FQ²=FO²+QO²=3²+2²=9+4=13
FQ=√13
S(Δ NPF)=PN·FQ/2=2·√13/2=√13 кв ед
4.
В основании пирамиды квадрат АВСD.
Рассмотрим треугольник AFC
AF=FC
Равнобедренный треугольник, угол при вершине 60°, значит углы при основании 120°/2=60°. Треугольник равносторонний и АС=4
АС- диагональ квадрата
Пусть сторона квадрата равна х.
По теореме Пифагора из треугольника АСD
х²+х²=4²
2х²=16
х²=8
S(ABCD)=x²=8 кв. ед
6 отрезков имеется AB AC AD BC BD CD