Пусть Х - длина прямоугольника ,
Тогда У - Ширина
ХУ - площадь прямоугольника
2(Х+у) - периметр прямоугольника
Площадь и периметр известны
Составим систему уравнений :
{ ху= 210 кВ дм
{ 2(Х+у) ='62 дм
{ ху=210
{ Х+у= 31
Х= 31-у
(31-у) у= 210
31у - у^2 -210=0
У^2 -31у+210=0
Д=корень из 221
Д=11
У1= (31+11) /2= 21 дм - Ширина
У2= (31-11)/2=10 дм - Ширина
Х1=31-21=10 дм - длина
Х2=31-10=21 дм - длина
Ответ: { х1=10 дм
{ у1 =21 дм
{ х2=21 дм
{ у2=10 дм
Смотри приложение. там все показано
Y`=3x²+22x-45=0
D=484+540=1024
x1=(-22-32)/6=-9∈[-14;-8]
x2=(-22+32)/6=5/3∉[-14;-8]
y(-14)=-2744+2156+720-20=112
y(-9)=-729+891+405-20=547 наиб
y(-8)=-512+704+360-20=532