Смотрим. Скорость по земле - 1.500 м/мин, скорость в небе - ? в 3 раза больше, чем по земле. Расстояние по земле - ?, расстояние по небу - ?. Время по земле - 20 минут, время в небе - в 4 раза меньше.
1) 20:4=5 (мин) - он летит в небе.
2) 1.500*3=4.500 (м/мин) - скорость коня в небе.
3) 1.500*20=30.000 (м) - он бежит по земельке.
4) 4.500*5=22.500 (м) - он летит в небе.
5) 30.000+22.500=52.500 (м) - расстояние конь преодолеет.
Ответ: 52.500 метров преодолеет конь.
Прости, если где то помарочка
135 = 3*3*3*5
315 = 3*3*5*7
<span> НОД(135, 315) = 3*3*5 = 45</span>
Проведем высоты трапеции ЕР и ВН.
ЕР=ОЕ+ОР=ВН.
Так как в трапецию можно вписать окружность, то выполняется равенство:
АВ+СD=AD+BC
Периметр равен:
P=AB+CD+AD+BC=40, значит
2АВ=20, АВ=10 (трапеция равнобедренная)
AD+BC=20
S=(AD+BC)/2*ЕР, отсюда
ЕР=2S/(AD+BC)= 2*80/20=8 => ВН=8.
Высота ВН делит основание ВD на два отрезка
АН=(AD-BC)/2 и HD=(AD+BC)/2 (свойство равнобедренной трапеции).
2АН=AD-BC.
Из теоремы Пифагора АН=√(АВ²-ВН²)=√(10²-8²)=6.
Итак,
AD+BC=20
AD-BC=12, значит
AD=16, ВС=4.
Треугольики ВОС и АОD подобны по двум углам (даже по трем!),так как <CAD=<ACB и <BDA=<DBC - внутренние накрест лежащие углы
при параллельных ВС и AD и секущих АС и ВD соответственно.
Коэффициент подобия этих треугольников равен k=ВС/AD=1/4.
Тогда ОЕ/ОР=1/4 (высоты подобных треугольников).
ОР=4*ОЕ. ОЕ+ОР=8. 5*ОЕ=8.
ОЕ=8/5=1,6.
Ответ: искомое расстояние равно 1,6.