<span>Умножаем обе части на 2*sin x:
2*sin(x)*cos(2x)+2*sin(x)*cos(4x)+2*sin(x)*cos(6x)+2*sin(x)*cos(8x)=-sin x
Замечаем:
2 * sin x * cos 2x = sin 3x - sin x
2 * sin x * cos 4x = sin 5x - sin 3x
2 * sin x * cos 6x = sin 7x - sin 5x
2 * sin x * cos 8x = sin 9x - sin 7x
Поэтому в левой части первого равенства почти все сокращается:
получаем sin 9x - sin x = - sin x, то есть sin 9x = 0.
Решения этого уравнения -- x = пk/9 для любого целого k.
Не забываем, что регения вида x=пm для целого m могли
добавиться в ходе решения, когда мы домножали на sin x.
Поэтому надо проверить подстановкой, являются ли они
решениями исходного уравнения: 4=-1/2 -- нет, не являются.
Ответ: x=пk/9 при любом целом k, не делящемся на 9.</span>
<span>3a+ax-3b+3c-bx+cx=3(а+с-в)+х(а+с-в)=(а+с-в)(3+х)</span>
{x^2+y^2=9 => y^2=9-x^2 => y=√(9-x^2)
{x+y=3 => y=3-x
ОДЗ: -3≤x≤3
x₁=0
x₂=3
Таблица и график во вложении
1) y=-x²+4, y=x
найдём точки пересечения графиков
-x²+4=x
решим квадратное уравнение
x²+x−4=0
<span>D=b2−4ac=12−4·1·(−4)=1+16=17 </span>
x₁=(-1 - √17)/2=-(√17+1)/2
x₂=(-1 + √17)/2=(√17-1)/2
интегралы в промежутке от x₁= -(√17+1)/2 до x₂=(√17-1)/2
S1=∫(-x^2-x+4)dx =4x-x³/3=4x₂-x₂³/3-4x₁-x₁³/3
S2=∫xdx=x²/2=x₂²/2-x₁²/2
<span>разность интегралов </span>
в промежутке от -(√17+1)/2 до (√17-1)/2
это площадь S фигуры,ограниченной указанными линиями
S=S1-S2=4x₂-x₂³/3-4x₁-x₁³/3-x₂²/2+x₁²/2=
=4x₂-x₂³/3-x₂²/2-4x₁-x₁³/3+x₁²/2=
=4(√17-1)/2-((√17-1)/2)³/3-((√17-1)/2)²/2-4(-(√17+1)/2)-(-(√17+1)/2)³/3+(-(√17+1)/2)²/2=(17√17)/6
Ответ:(17√17)/6
2)
y=6x, y=12x-3x²2
найдём точки пересечения графиков
12x-3x^2=6x
решим квадратное уравнение
3x²2+6x-12x=0
3x²2-6x=0
3x(x-2)=0
x1=2
x2=0
площадь S фигуры,ограниченной указанными линиями
в промежутке от 0 до 2 будет разность интегралов
S=∫(12x-3x²)dx-∫6xdx=∫(12x-3x²-6x)dx=∫(6x-3x²)=
=-x³+3x²=-2³+3*2²=12-8=4
<span>Ответ:4
</span>
=6х-6=-18+54
6х-6=36
6х=36+6
6х=42
х=42÷6
х=7