<u><em>
</em></u>
<u><em>
(5x^2+x-4)/(x^2+x)</em></u>=5[(x-0.8)(x+1)]/x(x+1)=5(x-0.8)/x=5x-4/x=<u><em>
5-4/x</em></u>
<u><em>
(t^4-bt^2+16)/(t+2)(t^2-4)</em></u>=[-bt^2-(t^4-16)]/(t^2-4)(t+2)=
-bt^2/(t+2)(t^2-4)-[(t^2-4)(t^2+4)]/(t^2-4)(t+2)=
-bt^2/(t+2)(t^2-4)-[(t-2)<u>(t+2)</u>(t^2+4)]/(t^2-4)<u>(t+2)</u>=
-bt^2/(t+2)(t^2-4)-(t-2)=
=<u><em>
2-t-bt^2/(t+2)(t^2-4)</em></u>
40-16=24(кг)-израсходовано за 8недель
24/8=3(кг)-израсходовано за неделю (при условии, что еженедельно расходовали одинаковое кол-во кг)
Ответ: 3кг картофеля
2sinx*cos+sinx+cosx+1=0
(2sinx*cosx+1)+(sinx+cosx)=0
(2sinx*cosx+1)+(√(sinx+cosx))²=0
(2sinx*cosx+1)+√(sin²x+2sinx*cosx+cos²x)=0
(2sinx*cosx+1)+√(2sinx*cosx+1)=0
замена переменной:
√(2sinx*cosx+1)=t,
t²+t=0
t₁=0, t₂=-1
обратная замена:
1. t=0, 2sinx*cosx+1=0, sin2x=-1
2x=-π/2+2πn, n∈Z |:2
x₁=-π/4+πn. n∈Z
2. t=-1, √(2sinx*cosx+1)=-1. 2sinx*cosx+1=1, 2sinx*cosx=0
sinx=0 или cosx=0
x₂=πn, n∈Z
x₃=π/2+πn, n∈Z