Данная задача решается довольно просто, поскольку нам уже дано изменение скорости ядра, при котором, по всей видимости (что нужно будет проверить неравенством), теряется механическая энергия.
Итак: начальный импульс ядра: m vo ;
Начальный момент импульса ядра относительно оси ОО': (L–a) m vo ;
Конечный импульс ядра (сразу после удара) по горизонтальной оси равен нулю, а значит, и конечный момент импульса ядра равен нулю. Тогда изменение момента импульса ядра относительно оси ОО' равно его начальному моменту импульса. Всё это изменение момента импульса ядра превратится в момент импульса дощатого бруса. Обозначив угловую скорость и момент инерции дощатого бруса, соответственно, как: ω и J , мы можем записать:
Jω = (L–a) m vo ; [1]
Кинетическая энергия дощатого бруса равна Jω²/2 и вся она перейдёт в потенциальную энергию, когда он поднимется, повернувшись на угол φ. Нижняя кромка бруса при повороте на угол φ окажется на Lcosφ ниже оси OO'. Таким образом, нижняя кромка поднимется от начального уровня на величину L(1–cosφ), а поскольку центр масс точно вдвое ближе к оси OO', чем нижняя кромка, то общее поднятие центра масс бруса при его повороте на угол φ составит L(1–cosφ)/2 , а изменение потенциальной энергии в поле силы тяжести будет равно: MgL(1–cosφ)/2 . Когда вся кинетическая энергия перейдёт в потенциальную, дощатый брус как раз и окажется в своей верхней точке, т.е. в положении максимального отклонения. Итак, учитывая превращение кинетической энергии в потенциальную, мы можем записать:
Jω²/2 = MgL(1–cosφ)/2 ;
J²ω² = MgJL(1–cosφ) ;
Учтём, что J = ML²/3, тогда:
J²ω² = M²L³g(1–cosφ)/3 ;
Jω = ML√[Lg(1–cosφ)/3] ;
Приравняем к этому уравнение [1] и получим:
(L–a) m vo = ML√[Lg(1–cosφ)/3] ;
vo = [M/m] L/[L–a] √[Lg(1–cosφ)/3] ;
vo = M/[m(1–a/L)] √[Lg(1–cosφ)/3] ;
Проверим ещё, что кинетическая энергия в системе не возрастает, что было бы абсурдом:
vo² = ( M / [m(1–a/L)] )² Lg(1–cosφ)/3 ;
Тогда начальная кинетическая энергия равна:
Eo = mvo²/2 = ( M / [1–a/L] )² Lg(1–cosφ)/[6m] ;
А конечная кинетическая энергия, равная потенциальной, должна быть не больше начальной кинетической:
MgL(1–cosφ)/2 < ( M / [1–a/L] )² Lg(1–cosφ)/[6m] ;
1 < M/[3m(1–a/L)²] ;
(1–a/L)² < M/[3m] ;
1–a/L < √[M/(3m)] ;
ОТВЕТ
при выполнении условия 1–a/L < √[M/(3m)] – начальная скорость описанного движения ядра должна была бы быть:
vo = M/[m(1–a/L)] √[Lg(1–cosφ)/3] .
При электризации шары получили заряды противоположного знака. В этом случае возникают силы притяжения.
Переведём длину из км в метры, получим L= 0,01 * 1000 = 10метров.
Чтобы найти высоту. площадь стены разделим на её длину, h= 40 : 10 = 4 метра.
Ответ: 4 м (А)
Дано:
m₁=80 кг
m₂=40 кг
V₁=2 м/с
V₂=0,5 м/с
Найти: V - скорость тележки и человека после того, как человек вспрыгнул на тележку
Решение:
По закону сохранения импульса в векторном виде:
m₁*V₁+m₂*V₂=(m₁+m₂)*V -----> отсюда выразим V:
V=(m₁*V₁+m₂*V₂)/(m₁+m₂)=(80*2+40*0.5)/(80+40)=180/120=1,5 м/с.
Ответ: V=1,5 м/с.