<3+<1+<5=180 град
<5=180-130=50 град
<2=<5=50 град
<1=<2=50 град (углы при основании равнобедренного ΔАВС
<5+<1+<4 = 180 град. (развёрнутый угол)
<4=180-50-50=80 град.
<3=<4=80 град. (накрест лежащие углы)
рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.
Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольник BCD в котором B = D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, ч т д
Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.
рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.
Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу, поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,ч т д
Обозначим неизвестные нам компоненты геометрической прогрессии переменной "b". Тогда:
b(1)+b(1)q+b(1)q²=26
b(1)+3b(1)+9b(1)=26
13b(1)=26
b(1)=2
Раз мы уже знаем b(1), по формуле найдем сумму первых шести членов геометрической прогрессии:
S6=b(1)×(1-q^6)÷(1-q)
S=2×(1-729)÷(-2)=728
Ответ: 728.
JK=KL=135,2÷2=67,6 т.к. K середина отрезка