Вертикальное сечение конуса с вписанным в него шаром, проходящее через центр основания будет выглядеть как треугольник с вписанной в него окружностью. Радиус окружности будет равен радиусу шара. Найти радиус окружности можно воспользовавшись формулой r = sqrt ( (p-a)*(p-b)*(p-c)/p ), где p - полупериметр треугольника, a, b и c - длины сторон треугольника. Две из трех сторон треугольника равны образующей конуса (15 см), а третья равна диаметру основания конуса (18 см). Полупериметр будет равен 24 см. Подставляем эти цифры в формулу радиуса вписанной окружности и получаем r = 4,5 см. Остается воспользоваться формулой объема шара - V = 4/3 * Pi * r^3. Объем получается равным 381.7 куб.см.
пусть х=Vудал.-скорость удаления при движении с отставанием
Решение первого во вложении:
0,5bd7×1,2b14d13=0,6b15d20
(-5x+7y)(8x+9)= -40x²-45x+56xy+63y