Cos(6x) ≡ cos²(3x) - sin²(3x) ≡ 1 - sin²(3x) - sin²(3x) ≡ 1 - 2*sin²(3x),
подставляем это в уравнение и получаем:
1 - (1 - 2*sin²(3x) ) = sin(3x),
2*sin²(3x) = sin(3x),
2*sin²(3x) - sin(3x) = 0,
sin(3x)*( 2*sin(3x) - 1) = 0,
1) sin(3x) = 0 или 2) 2*sin(3x) - 1 = 0,
1) 3x = π*n, n∈Z
x = π*n/3, n∈Z
2) sin(3x) = 1/2,
3x = arcsin(1/2) + 2*π*m, m∈Z
или
3x = π - arcsin(1/2) + 2*π*k, K∈Z
3x = (π/6) + 2*πm,
или
3x = π - (π/6) + 2*π*k = (5π/6) + 2*π*k,
x = (π/18) + (2πm/3),
или
x = (5π/18) + (2πk/3).
Ответ. x = πn/3, n∈Z, или x = (π/18) + (2πm/3), m∈Z,
или x = (5π/18) + (2πk/3), k∈Z.
<span>Если понравилось решение - нажимай "спасибо" и "лучший" (рядом с кнопкой "спасибо") :)</span>
-х2+5х-7=0, где х2 - это х в квадрате
Д=25-4*7=-3 D<0, значит корней нет
Следовательно нулей нет
_
6х2-5х+1=0
Д=25-4*6=1>0, значит 2 корня
х=(5+1)/12=1/2
х=(5-1)/12=1/3
Вот они нули функции.
Если х=-2,5 тогда
у=4×(-2,5)-30
у=-10-30
у=-40
Проверка:
-40=(4×2,5)-30.