Доказательство будем проводить методом от противного. Предположим, что существует рациональное число m/n, квадрат которого равен 2: (m/n)^2 = 2.
Если целые числа m и п имеют одинаковые множители, то дробь m/n можно сократить. Поэтому с самого начала мы вправе предположить, что дробь m/n несократима.
Из условия (m/n)^2 = 2 вытекает, что m^2 = 2п^2 . .
Поскольку число 2п^2 четно, то число m^2 должно быть четным. Но тогда будет четным и число m. Таким образом, m = 2k, где k — некоторое целое число. Подставляя это выражение для m в формулу m^2 = 2п2 получаем: 4k^2 = 2п^2, откуда п^2 =2k^2.
<span>В таком случае число п^2 будет четным; но тогда должно быть четным и число п. Выходит, что числа m и п четные. А это противоречит тому, что дробь m/n несократима. Следовательно, наше исходное предположение о существовании дроби m/n, удовлетворяющей условию (m/n)^2 = 2., неверно. Остается признать, что среди всех рациональных чисел нет такого, квадрат которого был бы равен 2. </span>
1. сначала запишем все в виде одной дроби: = 56\9
2. 56 :9=6 и остаток. значит 6 целых будет
3. 9*6= 54. 56-54= 2. значит в числитель пойдет 2.
получим: 6 целых и 2\9
15-5=10 -лисиц
15+10=25 -волков и лисиц