log(a) b a>0 b>0 a≠1
log(0.2) (4^x + 12) ≤ log(0.2) (7*2^x)
ОДЗ основания и тело логарифмов больше 0 x∈R
если основание от 0 до 1 то при съеме логарифма меняем знак неравенства на обратный
4^x + 12 ≥ 7*2^x
2^x = t (t> 0)
t^2 - 7t + 12 ≥ 0
D=49 - 48 = 1
t12 = (7 +- 1)/2 = 3 4
(t - 3)(t - 4) ≥ 0
+++++++++[3] ---------- [4] +++++++++
t ∈ (-∞, 3] U [4, +∞)
1. t ≤ 3
2^x ≤ 3
log(2) 2^x ≤ log(2) 3
x ≤ log(2) 3
2. 2^x ≥ 4
x ≥ 2
ответ x∈ (-∞, log(2) 3] U [2, +∞)
Умножанм и сокращаем предварительно в первом множителе вынесли у за скобка
Ответ : у/2
Данное дифференциальное уравнение является уравнением с разделяющимися переменными
Получили общий интеграл. Найдем теперь частный интеграл, подставив начальные условия.
Частный интеграл:
(x+5)⁴-13x²(x+5)²+36x⁴=0
Для возведения в степерь воспользуемся биноминальной формулой
x⁴+20x³+150x²+500x+625-13x⁴+130x³+325x²+36x⁴=0
24x⁴-110x³-175x²+500x+625=0
Разложим одночлены в сумму нескольких
24x⁴-110x³-275x²+100x²+500x+625=0
24x⁴-110x²(x+2.5)+100(x+2.5)²=0
Пусть x²=A, x+2.5=B, в результате
24A²-110AB+100B²=0
24A²-80AB-30AB+100B²=0
8A(3A-10B)-10B(3A-10B)=0
(3A-10B)(8A-10B)=0
Возвращаемся к замене
(3x²-10(x+2.5))(8x²-10(x+2.5))=0
(3x²-10x-25)(8x²-10x-25)=0
Два уравнения
3x²-10x-25=0
D=b²-4ac=100+300=400
x₁=-5/3
x₂=5
8x²-10x-25=0
D=100+32*25=900
x₃=-1.25
x₄=2.5
Ответ: -5/3; -1.25; 2.5; 5.
2(x-1)⁴-5(x²-3x+2)²+2(x-2)⁴=0
Биноминальна формула
Раскроем скобки по формуле
2x⁴-8x³+12x²-8x+2-5x⁴+30x³-65x²+60x-20+2x⁴-16x³+48x²-64x+32=0
x⁴-6x³+5x²+12x-14=0
Пусть x²-3x=t, в результате замены переменных получаем уравнение
t²-4t-14=0
D=b²-4ac=16+4*14=72
t₁=2-3√2
t₂=2+3√2
Вовзращаемся к замене
x²-3x=2-3√2
x²-3x-(2-3√2)=0
D=17-12√2; √D=3-2√2
x₁=√2
x₂=3-√2
x²-3x=2+3√2
x²-3x-(2+3√2)=0
D=17+12√2; √D=3+2√2
x₃=-√2
x₄=3+√2
Ответ: ±√2; 3±√2.