2^x^2=0,25*2^8x+22 2^x^2=2^(-2)*2^8x+22 2^x^2=2^8x+20 x^2=<span>8x+20
</span>x^2-<span>8x-20=0 x1+x2=8 x1x2=20 x1=10 x2=-2</span>
X²+(a-4)x-2a-1=0
Чтобы уравнение имело два решения, нужно Д>0
Д=(а-4)²-4(-2а-1)=а²-8а+16+8а+4=а²+20
а²+20>0
а²>-20 выполняется при любом а.
Рассмотрим (х1+х2)²=х1²+2х1х2+х2²=х1²+х2²+2х1х2 от сюда
х1²+х2²=(х1+х2)²-2х1х2
По т. Виета
х1+х2=-(а-4)=4-а
х1х2=-2а-1 подставим в выражение
х1²+х2²=(4-а)²-2(-2а-1)=
=16-8а+а²+4а+2=а²-4а+18.
Нужно найти минимальное значение найденного выражения, пусть задана функция
у=а²-4а+18
Графиком данной функции является парабола, а наименьшее значение функции, то есть сумма квадратов корней уравнения, будет в вершине параболы при а=-(-4)/2*1=2(формула для нахождения координаты х вершины параболы х=-b/2a), y min=2²-4*2+18=14.
Ответ: а=2
a28=a1+27d
d=a2-a1=-28+30=2
a28=-30+27*2=-30+54=24