7²=49
8²=64
49<53<64
7<√53<8
Ответ ответ ответ ответ ответ ответ ответ ответ
Решить <span> уравнения 4 * 16^sin^2x - 6 * 4^cos2x = 29
и найт</span>и все корни уравнения, принадлежащие отрезку [3π/2; 3π<span>] </span>
-------------------------------------------
4* (4² ^sin²x) -6*4^cos2x = 29⇔ 4* 4 ^(2sin²x) -6*4^cos2x = 29 ⇔
4* 4 ^ (1 -cos2x) -6*4^cos2x = 29 ⇔4* 4¹*4^( -cos2x) - 6*4^cos2x = 29 ⇔
4* 4 * 1 / ( 4^cos2x) - 6*4^cos2x = 29 ; * * * можно замена :t =4^cos2x * * *<span>
6* (4^ cos</span>2x)² +29* (4^ cos2x) -16 =0 ;
* * * (4^ cos2x)² +(29/6)* (4^ cos<span>2x)-8/3=0 * * * </span>
a) 4^cos<span>2x = -16 /3 < 0 не имеет решения </span><span> ; </span><span>
b) 4^cos</span>2x = 1/2 ⇔2 ^(2cos2x) = 2⁻¹ ⇔2cos2x = -1 ⇔ <span>cos2x = -1/2 .
</span>⇔2x = ±π/3 +2πn ,n ∈Z ;
x = ±π/6 +πn ,n ∈Z .
* * * * * * *
Выделяем все корни уравнения, принадлежащие отрезку [3π/2; 3π] .<span>
----
3</span>π/2 ≤ - π/6 +πn ≤ 3π ⇔ 3π/2+π/6 ≤ πn ≤ 3π+π/6 ⇔ 5/3 ≤ n ≤ 19/6⇒
n =2 ; 3 .
x₁= - π/6 +2π =11π/6 ; x₂ = - π/6 +3π =1<span>7π/</span>6 .
-----
3π/2 ≤ π/6 +πn ≤ 3π ⇔3π/2 -π/6 ≤ πn ≤ 3π -π/6 ⇔4/3 ≤ n ≤ 17/6⇒
n=2
x ₃ = π/6 +2π=13<span>π /6 .
</span>
3 * a₂ + a₄ = 16
3 * (a₁ + d) + a₁ + 3d = 16
4a₁ + 6d = 16
2a₁ + 3d = 8 ---> 2a₁ = 8 - 3d
----------------
a₃ * a₅ = (a₁ + 2d)(a₁ + 4d) = a₁² + 6*a₁d + 8d²
((8 - 3d)² / 4) + (8 - 3d) * 3d + 8d² =
16 - 12d + (9d² / 4) + 24d - d² = (5d² / 4) + 12d + 16
парабола, ветви вверх,
наименьшее значение функции достигается в вершине параболы))
d₀ = -12 : (2*5/4) = -12*4/10 = -4.8