14. y' = 3x^2 - 6(a + 2)x + 3 = 3(x^2 - 2(a + 2)x + 1) должно быть больше нуля для всех, это выполнится, если дискриминант трехчлена, стоящего в скобах, будет меньше нуля.
D/4 = (a + 2)^2 - 1 < 0
-1 < a + 2 < 1
-3 < a < -1
Сумма = -2
15. Т.к. корень - величина неотрицательная, решение - все точки, для которых 2 - x - x^2 > 0 (тогда корень существует и не равен нулю) и x + 5 > 0.
Для всех точек решения первого неравенства (-2, 1) второе неравенство выполняется.
Ответ. (-2, 1)
23. Количество нулей (без учета кратностей) такое же, как и у функции g = sin(2x + pi/4). При изменении x: 0 -> 3pi аргумент синуса изменяется на 6pi, т.е. на 3 периода. Т.к. x = 0 и x = 3pi - не нули, то всего нулей в 3 раза больше, чем на одном периоде. Ну, а как известно, на [0, 2pi) синус обнуляется 2 раза.
Ответ. 6
27. Пусть tg x = 2, 0 < x < pi/2. Необходимо найти sin(2x).
Найдем сначала cos^2(x), sin^2(x).
Т.к. 1 + tg^2(x) = 1/cos^2(x), то cos^2(x) = 1/(1 + 2^2) = 1/5 и sin^2(x) = 1 - 1/5 = 4/5.
sin^2(2x) = 4sin^2(x)cos^2(x) = 16/25
Т.к. sin(2x) > 0 при 0 < x < pi/2, то sin(2x) = +sqrt(16/25) = 4/5
0,5(18+x)+1,5(20-x)=36
9+0,5x+30-1,5x=36
-x+39=36
x=39-36
x=3км/ч скорость течения
Пусть х это первый отрезок. Тогда второй отрезок х+5. По условию задачи общая длина отрезка 9 см. Составляю уравнение.
х+х+5=9
2х+5=9
2х=4
х=2
Тогда первый отрезок 2 см, второй отрезок 2+5=7см
Ответ: 2см, 7см