<span>Теоретически, при вхождении в атмосферу на высотах 11–25 км со скоростью
М=2 (в два раза выше скорости звука) температура торможения 390°К вызовет
нагрев поверхности на 173°, для скорости М=5 температура торможения 1300°К
добавит к температуре поверхности уже 1083°, а для скоростей М=10 температура
торможения 4550° К нагревает лобовую поверхность до немыслимой температуры
4333° по шкале Кельвина
На практике все сложнее. При движении в воздушной среде со сверхзвуковой скоростью перед
аппаратом возникает ударная волна. Несмотря на крайнюю разреженность воздуха на больших высотах, на
космических скоростях входа в атмосферу температура воздуха во фронте ударной
волны может достигать 28 000° по шкале Кельвина – в 9 раз выше, чем температура
на поверхности Солнца.
Самый тугоплавкий металл - вольфрам плавится при температуре 3683°К
</span><span>То есть, если не применять в конструкции корабля керамических элементов носового обтекателя и крыльев, то корабль просто сгорит в атмосфере, как это, например, произошло со станцией "Мир" при ее сходе с орбиты.
</span><span>В тепловой защите космического корабля "Буран" использовались материалы на базе
кварцевых и кремнеземных волокон.</span>
Q=Lm+cm(t2-t1);
132000=L*0.5+380*0.5*(419-19);
132000=L*0.5+76000;
56000=L*0,5
<span>L=112000=112 кДж\кг</span>
Принцип реактивного движения. Залп топлива, она подлетает. Когда начинает падать, опять происходит залп и так до полного сгорания топлива.
По закону сохранения импульса: m₁V₁ +0 = (m₁+m₂)V,
V= m₁V₁/(m₁+m₂)
V= 60*3 /(60+80)=180/140=1,3 м/с