Попытаюсь объяснить, намеренно уходя от точных формулировок.
Когда мы прикладываем к некоторому физическому телу внешнюю силу, внутри него возникают силовые факторы (сила и момент силы), совокупный эффект действия которых принято оценивать механическим (или просто) <u>напряжением</u>. При растяжении или сжатии вдоль оси такого тела, как тонкий стержень, момент отсутствует, а сила направлена перпендикулярно сечению стержня, поэтому <em>величину напряжения можно найти как отношение приложенной силы к площади поперечного сечения стержня.</em>
Под действием внешней силы стержень изменяет свою длину, сжимаясь или растягиваясь (мысленно заменим стержень резинкой и потянем за концы). Этот процесс называется <u>деформацией</u>. Деформация может быть <u>упругой</u>, если после снятия внешней силы стержень восстановит свою первоначальную форму и размеры и неупругой, если этого не произойдет.
Связь между напряжением и упругой деформацией устанавливает <u>закон Гука</u>. Согласно нему, <em>напряжения прямо пропорциональны деформациям</em>. И все. Еще раз: речь именно об упругой деформации!
Мысленно растянем некоторый упругий стержень, закрепив его один конец и приложив силу F к другому концу стержня. Стержень под воздействием приложенной силы деформируется и его длина увеличится на некоторую величину деформации ΔL. Если мы увеличим силу F в n раз, то и величина деформации станет равна n·ΔL
<u>Экспериментально</u> установлено, что
Здесь σ - величина нормального напряжения, ε - относительное удлинение, а Е - коэффициент пропорциональности, который называется модулем Юнга или модулем упругости. Почему напряжение "нормальное"? Потому, что оно действует по нормали (т.е. перпендикулярно) к площади сечения стержня.
Как вычислить <u>деформацию</u>? Найти из приведенных формул ΔL.
Теперь о <u>силе упругости</u>. Это именно та сила, которая стремится восстановить форму и размеры тела при деформации. При растяжении или сжатии сила упругости по величине равна внешней приложенной силе, а по направлению противоположна ей.