Если строго по вашей записи:
Оценим показатель степени при x->0:
Оценим основание степени при х->0:
Имеем:
основание степени стремится к 1, при х->0
показатель степени стремится к бесконечности, при x->0
Получаем единицу в степени бесконечность, т.е. единицу.
Задание 280 составлено не вполне корректно - не уравнение на множители раскладывается,а многочлен.
Кроме того, для разложения квадратного многочлена на множители надо решить уравнение, найти его корни а уже потом заменить многочлен на множители по такой схеме:
ах²+вх+с = а(х-х₁)(х-х₂), где х₁ и х₂ - корни уравнения.
1) х²-4х-5 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-4)^2-4*1*(-5)=16-4*(-5)=16-(-4*5)=16-(-20)=16+20=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-4))/(2*1)=(6-(-4))/2=(6+4)/2=10/2=5;
x_2=(-√<span>36-(-4))/(2*1)=(-6-(-4))/2=(-6+4)/2=-2/2=-1.
Отсюда </span><span>х²-4х-5 = (х-5)(х+1).
4) 2х</span>²-3х+1 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-3)^2-4*2*1=9-4*2=9-8=1;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√1-(-3))/(2*2)=(1-(-3))/(2*2)=(1+3)/(2*2)=4/(2*2)=4/4=1;
x_2=(-√<span>1-(-3))/(2*2)=(-1-(-3))/(2*2)=(-1+3)/(2*2)=2/(2*2)=2/4=0.5.
Заданный многочлен представляется в виде множителей:
</span> 2х²-3х+1 = 2(х-1)(х-0,5) или (х-1)(2х-1)
У меня получилось 3711, но я не уверена
Ответ:37
Объяснение:
2•(-3)•(-7)-<em>3•(-3)</em>+<u>2•(-7)</u>
2*(-3)*(-7) = 42
<em>-3*(-3)</em> = 9
<u>2*(-7)</u>=14
42+<em>9</em>-<u>14</u>=37
37