Решение
<span>tgx-2ctgx+1=0, (ctgx = 1 / tgx)
tgx - 2/tgx + 1 = 0 умножим на tgx </span>≈ 0
tg²x + tgx - 2 = 0
tgx = t
t² + t - 2 = 0
t₁ = - 2
t₂ = 1
1) tgx = - 2
x₁ = arctg(- 2) + πk, k ∈ Z
<span>x₁ = - arctg( 2) + πk, k ∈ Z</span>
2) tgx = 1
x₂ = π/4+ πn, n ∈ Z
(0.125+4)²-(0.125+2)=14.890625
(4.125)²-2.125
17.05625-2.125
=5у-4у-5=y-5
это же легко!
(b-2)^2*(1/b^2-2b+1 + 1/b^2-1) + 2/b+1=(b-2)^2*(2*(1/b)^2-2b)+2/b+1=(b-2)^2*(2*1/b^2-2b)+2/b2+1=(b-2)^2*(2/b^2-2b)+2/b+1=(b-2)^2*2-2b^3/b^2+2/b+1=(b-2)^2*(2-2b^3)/b^2+2/b+1=(b^2-4b+4)*(2-2b^3)/b^2+2/b+1=2b^2-2b^5-8b+8b^4+8-8b^3/b^2+2/b+1=2b^2-2b^5-8b+8b^4+8-8b^3+2b+b^2/b^2= -2b^5+8b^4-8b^3+3b^2-6b+8/b^2