8 - 3/7 = 7 7/7 - 3/7 = 7 4/7
семь целых четыре седьмых
Я продолжу PN за точку N до пересечения с продолжением QC. Пусть точка пересечения Q1;
PC пересекает NM в середине, поэтому из подобия PMN и PQQ1 точка C - середина QQ1.
Значит NQ1 = NQ, и по теореме Фалеса PN/NQ1 = PM/MQ;
то есть PN/NQ = PM/MQ; это свойство биссектрисы. То есть NM - биссектриса угла QNP.
то есть ∠PNM = <span>∠QNM;</span>
Пусть точки, равноудалённые от двух заданных в условии, имеют координаты (х,у). Тогда запишем равенство расстояний от точки (х,у) до точки А(5;4) и от точки (х,у) до точки В(7;-2).
Это прямая.