А) 2(5-3x)=6-5x
10-6x-6+5x=0
-x+4=0
-x=-4
x=4
б) 2(1-x)-4(2x+8)=8x+28
2-2x-8x-32-8x-28=0
-18x-58=0
-18x=58
x= -58/18
в)1/2+1/4x=x-3/4
0,5+0,25x-x+0,75=0
-0,75x+1,25=0
-0,75x=-1,25
0,75x=1,25
x=1,25/0,75
x=5/3
Решить <span> уравнения 4 * 16^sin^2x - 6 * 4^cos2x = 29
и найт</span>и все корни уравнения, принадлежащие отрезку [3π/2; 3π<span>] </span>
-------------------------------------------
4* (4² ^sin²x) -6*4^cos2x = 29⇔ 4* 4 ^(2sin²x) -6*4^cos2x = 29 ⇔
4* 4 ^ (1 -cos2x) -6*4^cos2x = 29 ⇔4* 4¹*4^( -cos2x) - 6*4^cos2x = 29 ⇔
4* 4 * 1 / ( 4^cos2x) - 6*4^cos2x = 29 ; * * * можно замена :t =4^cos2x * * *<span>
6* (4^ cos</span>2x)² +29* (4^ cos2x) -16 =0 ;
* * * (4^ cos2x)² +(29/6)* (4^ cos<span>2x)-8/3=0 * * * </span>
a) 4^cos<span>2x = -16 /3 < 0 не имеет решения </span><span> ; </span><span>
b) 4^cos</span>2x = 1/2 ⇔2 ^(2cos2x) = 2⁻¹ ⇔2cos2x = -1 ⇔ <span>cos2x = -1/2 .
</span>⇔2x = ±π/3 +2πn ,n ∈Z ;
x = ±π/6 +πn ,n ∈Z .
* * * * * * *
Выделяем все корни уравнения, принадлежащие отрезку [3π/2; 3π] .<span>
----
3</span>π/2 ≤ - π/6 +πn ≤ 3π ⇔ 3π/2+π/6 ≤ πn ≤ 3π+π/6 ⇔ 5/3 ≤ n ≤ 19/6⇒
n =2 ; 3 .
x₁= - π/6 +2π =11π/6 ; x₂ = - π/6 +3π =1<span>7π/</span>6 .
-----
3π/2 ≤ π/6 +πn ≤ 3π ⇔3π/2 -π/6 ≤ πn ≤ 3π -π/6 ⇔4/3 ≤ n ≤ 17/6⇒
n=2
x ₃ = π/6 +2π=13<span>π /6 .
</span>
\\\\\\\\\\\\\\\\\\\\\\\\\\
Ix+y-2I+(x-y)^2=0, так модуль >=0 и квадрат любого числа тоже >=0, то сумма модуля и квадрата разности может равняться 0, только если: Ix+y-2I=0 и (x-y)^2=0.