5+5*5+10+12*11+100*1=272
1)5*5=25
2)12*11=132
3)100*1=100
4)5+25+10+132+100=272
<u>Дано:</u><em>МО = ON</em>
<em>AM = AN</em>
<u>Найти</u>:<em>∠ АОN</em>
<u>Решение. </u>
Проведя необходимые построения, мы получим равнобедренный Δ АМN, т.к. по условию АМ = AN
АО - медиана ΔAMN, т.к. МО = ON по условию.
По свойству равнобедренного Δ, медиана, проведенная к основанию, является также высотой (<em> и биссектрисой вершины.</em>)
Т.е. АО ⊥ MN, значит, ∠ АОN =∠ AOM = 90°
<u>Ответ:</u>90°
<u>Примечание: </u><em>Если такое свойство медианы нужно доказать, то Δ AON = Δ AOM по трем сторонам (AN=AM и ON=OM по условию; AO - общая)</em>
<em>Тогда ∠AOM = ∠AON , но они смежные. Значит, </em>
<em>∠AON=∠AOM = 180 : 2 = 90° </em>
<em>Ответ:7</em>
<em />
<em>Пошаговое объяснение: (7/11):(1/11)=(7/11)*(11/1)=7/1=7</em>
<em />
Запишем уравнение в виде dy/dx=eˣ/(1+eˣ), или dy=eˣ*dx/(1+eˣ), или dy=d(1+eˣ)/(1+eˣ). Интегрируя обе части равенства, получаем y=ln(1+eˣ+)+ln(C), или y=ln(C*(1+eˣ)) - общее решение. Используя теперь условие y(0)=0, приходим к уравнению 0=ln(2*C), откуда 2*C=1 и C=1/2. Тогда частное решение таково: y=ln((1+eˣ)/2).
Если взять первоначальную сторону 10 то получаем что при увеличении ее на 10% она = 11
11*11=121
10*10=100
получаем что на 21%