-1/2,что ещё писать,это определение корня н-й степени
Сумма углов треугольника - 180 градусов. У равнобедренного треугольника 2 угла равны. Найдем их суму, отняв от 180 100. Сумма 2 одинаковых углов - 80. Тогда несложно узнать, что один такой угол равен <u>40 градусам.</u>
Возводим в квадрат обе части х^2-1=1, х^2=2, х=±√2
Вариант №1 - решение "в лоб":
100(x-2)<50(x-2) /:50 => 2(x-2)<(x-2) => 2(x-2)-(x-2)<0 => (x-2)<0 => x<2
Вариант №2 - пересечение графов функций:
Строим два графа: f(x)=100x-200 и g(x)=50x-100
Если x=0 получаем: f(0)=-200; g(0)=-100 => f(0)<g(0)
В x=2 получаем: f(2)=0; g(2)=0 => f(2)=g(2)
Значит всё, что в области x>2 даст нам f(x)>g(x)
С учётом того, что функции линейные получаем истинность выражения
100(x-2)<50(x-2)
при значении х<2
Вариант №3 - граф разности:
100(x-2)<50(x-2) => 100(x-2)-50(x-2)<0 => 50(x-2)<0
Рисуем граф f(x)=50x-100 и смотрим при каких значениях Х он проходит ниже y=0
В данном случае - до х=2.
P.S. В принципе техника решения в той или иной мере сводится к первому варианту, но, по сути, это три разных подхода. Причём второй и третий подходы намного проще решения "в лоб" в неравенствах с корнями, экспонентами и особенно - модулями первых и вторых.