Ответ: y"-20*y'+100*y=0.
Пошаговое объяснение:
Уравнение семейства кривых содержит две постоянные A и B. Для составления дифференциального уравнения данного семейства кривых нужно исключить эти постоянные. Для этого требуется продифференцировать заданное уравнение столько раз, каково число постоянных. В данном случае постоянных - две, поэтому дифференцируем заданное уравнение два раза.
1) y'=10*A^(10*x)+B*e^(10*x)+10*B*x*e^(10*x)=10*e^(10*x)*[A+B*x]+B*e^(10*x)=10*y+B*e^(10*x). Отсюда B=(y'-10*y)*e^(-10*x).
2)y"=100*A*e^(10*x)+10*B*e^(10*x)+10*B*e^(10*x)+100*B*x*e^(10*x)=100*e^(10*x)*[A+B*x]+20*B*x=100*y+20*e^(10*x)*[y'-10*y]*e^(-10*x)=100*y+20*y'-200*y=20*y'-100*y, откуда y"-20*y'+100*y=0.
1рис.2 прямых,1 остр.
2 рис.6 прямых,
3 рис.2 туп.,1прямых,и острый