Модуль числа всегда положителен.
16+7=23
X - скорость лодки, y - скорость плота (течения).
Уравнение 1: 8y = 1,5(x + y) + 0,5;
16y = 3x + 3y + 1;
13y - 3x = 1.
Уравнение 2: 2,5(x - y) = 20;
x - y = 8; x = y + 8.
Подставляем (2) в (1): 13y - 3(y + 8) = 1;
13y - 3y - 24 = 1;
10y = 25; y = 2,5; x = 10,5.
Значит, скорость с которой догоняли плот: x + y = 13 км/ч.
1) sin^2 x + sin 2x - 3cos^2 x = 0
sin^2 x + 2sin x*cos x - 3cos^2 x = 0
Делим все на cos^2 x
tg^2 x - 2tg x - 3 = 0
(tg x + 1)(tg x - 3) = 0
tg x = -1; x1 = -pi/4 + pi*k
tg x = 3; x2 = arctg(3) + pi*n
2) 10sin^2 x + 5sin x*cos x + cos^2 x = 3sin^2 x + 3cos^2 x
7sin^2 x + 5sin x*cos x - 2cos^2 x = 0
Делим все на cos^2 x
7tg^2 x + 5tg x - 2 = 0
(tg x + 1)(7tg x - 2) = 0
tg x = -1; x1 = -pi/4 + pi*k
tg x = 2/7; x2 = arctg(2/7) + pi*n
3) 6sin^2(2x) - 4sin(4x) + 4cos^2(2x) = 1
6sin^2(2x) - 4*2sin(2x)*cos(2x) + 4cos^2(2x) = sin^2(2x) + cos^2(2x)
5sin^2(2x) - 8sin(2x)*cos(2x) + 3cos^2(2x) = 0
Делим все на cos^2(2x)
5tg^2(2x) - 8tg(2x) + 3 = 0
(tg(2x) - 1)(5tg(2x) - 3) = 0
tg(2x) = 1; 2x = pi/4 + pi*k; x = pi/8 + pi/2*k
tg(2x) = 3/5; x = 1/2*arctg(3/5) + pi/2*n