F(x)=x³+2x²+16x
f'(x)=3x²+4x+16
f'(1)=3*1²+4*1+16=3+4+16=23
1452 центнеров, 145,2 тонны
0 на конце числа в том случае, если данное число можно разложить на множители, среди которых будут 2 и 5. Поэтому количество нулей на конце числа зависит от того, сколько 5 (пятёрок) входит в состав его множителей, так как на промежутке от 20 до 60 чётных чисел предостаточно.
Числа 20, 30, 35, 40, 45, 55, 60 содержат по одной 5. Всего 7.
Числа 25 и 50 содержат по две 5. Всего 4.
7+4=11
Ответ: произведение всех натуральных чисел от 20 до 60 ВКЛЮЧИТЕЛЬНО заканчивается 11 нулями.
Если множитель, равный 60, не включать в данное произведение, то оно будет оканчиваться на 10 нулей.
Это же так просто! а)a+4.б)10-b в)5*c г) t:24 д)а+8*b е)с-918:9 ж)р+10*6 з)b*3+7-6 и)c:8-3 извини если неправильно решать нечего не нужно :)