Из всех трех разновидностей теплопередачи конвекция дает наибольшую эффективность, поэтому там, где возможно, надо использовать именно конвекцию. Но это не всегда возможно. Например, в электронике сейчас используют настолько плотное расположение плат, что теплоноситель проникает туда с трудом. Поэтому приходится тепло от электронных чипов отводить теплопроводностью. Это пример использования теплопроводности в технике.
А использование ее в быту - это обычный нагрев дна кастрюли на плите газом. Горящий газ греет дно кастрюли, а тепло передается через стенку дна путем теплопроводности. Далее тепло от дна кастрюли поступает в воду и распространяется по всему объему воды путем конвекции. Если же рассматривать применение конвекции в технике, тогда это практически все теплообменники на всех предприятиях, заводах и электростанциях.
<span>Что касается излучения, то я знаю лишь одно использование излучения в быту - это лучевой нагрев помещения специальными инфракрасными радиаторами. Дело в том, что конвекция от горячих батарей греет вначале воздух, а уже через воздух это тепло поступает человеку. А излучение свободно проходит через воздух и поглощается сразу человеческим телом. Поэтому, используя лучевой нагрев, можно согреваться даже в довольно холодном помещении. В технике же тепловое излучение используется в основном в космических аппаратах. Там, в космосе отсутствует среда, которой мы могли бы передать избыточное тепло от энергоисточника аппарата. Поэтому приходится сбрасывать избыточное тепло излучением.</span>
Из перечисленных только - железо(Fe).
Мощность P=I*U ---> I=P/U, I=60Вт/200В=0,3 А
Максимальная скорость Vm=sqrt(2*E/m)=sqrt(2*0,2/0,1)=2 м/с
w=1/sqrt(L/g)=1/sqrt(0,9/10)=3,33 рад/с
xm=Vm/w=2/3,33=0,6 м