1
8(√3/2*cosx-1/2*sinx)-4cosx(√3/2cosx-1/2*sinx)=0
cos(x+π/6)*(8-4cosx)=0
cos(x+π/6)=0⇒x+π/6=π/2+πn,n∈z⇒x=π/3+πn,n∈z
8-4cosx=0⇒cosx=2>1 нет решения
2
4sin²3x+4cos²3x-cos²3x-3sin²3x-6sin3xcos3x=0/cos²3x
tg²3x-6tgx+3=0
tg3x=a
a²-6a+3=0
D=36-12=24
a1=(6-2√6)/2=3-√6⇒tg3x=3-√6⇒3x=arctg(3-√6)+πn,n⇒z⇒
x=1/3*arctg(3-√6)+πn/3,n∈z
a2=(6+2√6)/2=3+√6⇒tg3x=3+√6⇒3x=arctg(3+√6)+πk,k⇒z⇒
<span>x=1/3*arctg(3+√6)+πk/3,k∈z
3
8(</span>√3/2sinx+1/2cosx)-4sinx(√3/2sinx+1/2cosx)=0
cos(x-π/6)*(8-4sinx)=0
<span>cos(x-π/6)=0⇒x-π/6=π/2+πn,n∈z⇒x=2π/3+πn,n∈z
</span>8-4sinx=0⇒sinx=2>1 нет решения
4
1)sinx>0⇒x∈(2πn;π+2πn,n∈z)
sinx/sinx-2=2cosx
2cosx=-1
cosx=-1/2
x=2π/3+2πn,n∈z
2)sinx≤0⇒x∈[π+2πn;2π+2πn,n∈z]
-sinx/sinx-2=2cosx
2cosx=-3
cosx=-1,5<-1 нет решения
sin2a+sin6a=2sin4a cos2a
cos2a+cos6a=2coa4a cos2a
(sin2a+sin6a)/(cos2a+cos6a)=(2sin4a cos2a)/(2coa4a cos2a)=sin4a/cos4a=tg4a
(x-2)(x+2)/2x+1<0 2x+1=0 ;
2x=-1
x=-1/2
x1=2 ; x2=-2
x3=-1/2
___-__ o __+__ o___-___o___+___
-2 -1/2 2
x<0 поэтому выбираем интервалы на минусах
x∈(-∞;-2)U(-1/2;2)
Так как дискриминант <0, то квадр. трёхчлен положителен при любых значениях у.
Поэтому получили сумму двух положительных слагаемых, которая тоже будет
положительной.