(-5х+3)(-х+6)=0
-5х+3=0 -х+6=0
-5х=-3 -х=-6
х=0,6 х=6
х=0,6;6
.........................
Знаметель дроби не равен 0:
ln[(x - 2)/(4 - x)] ≠ 0
ln[(x - 2)/(4 - x)] ≠ ln1
(x - 2)/(4 - x) ≠ 1
x - 2 ≠ 4 - x
x + x ≠ 4 + 2
2x ≠ 6
x ≠ 3
Подлогарифмическое выражение больше 0:
(x - 2)/(4 - x) > 0
(x - 2)/(x - 4) < 0
Нули числителя: x = 2
Нули знаменателя: x = 4
+ 2||||||||||||||||-||||||||||||||||||4 +
---------------------0----------------------------0-------------> x
2 < x < 4
Но x ≠ 3
Поэтому x ∈ (2; 3) U (3; 4).
Ответ: D(y) = (2; 3) U (3; 4).
Решение сфотографировано. Ответ: целых решений одно