Пусть двузначное число записано цифрами х и у. Десятков х, единиц у.
Это число (10х+у).
Утроенная сумма цифр 3·(х+у) равна этому числу (10х+у)
Прибавим 45, получим число
10х+у+45, которое записано цифрами ух, у - десятки, х- единицы.
10х+у+45=10у+х
Получаем систему двух уравнений:
Ответ Это число 27
Сумма цифр (2+7)=9
Утроенная сумма 3·98=27 равна самому числу
27+45=72 - число при перестановке цифр которого получится исходное число
(x-1)(x+x+1)=(x-1)(2x+1)=2x²+x-2x-1=2x²-x-1.
4/11 = 0,36363636363636363636363636363636
1/3 = 0,33333333333333333333333333333333
0.33
0.3
b
5/8 = 0,625
2/3 = 0,66666666666666666666666666666667
0.66
0.6
Понятно что если последняя цифра меньше 9
То сумма цифр увеличится на 1.
Если же последняя цифра 9, то в зависимости от разрядов с девяткой после нее cумма цифр может уменьшатся на 9n-1 где n-число последовательно идущих разрядов 9 с конца.
Тк все девятки по цепной реакцие идут в нули а когда попадется не девятичный разряд то его цифра увеличивается на1 это нужно понимать.
Тк оба числа делятся на 49. То чтобы и следующее число делилось на 49. Нужно уменьшить сумму цифр на число делящееся на 49.
И нужно найти наименьшее такое число. Тк чем меньше сумма цифр тем меньше разрядов уйдет на число,а наименьшее число с наименьшим числом разрядов.
То нужно найти наименьшее целое m что
9n-1=49m
при m=1 решений нет
9n=50
А вот при m=2 такое решение уже есть :)
9n=99
То есть n=11
Сумма остальных цифр тоже должна делится на 49.(Возьмем 48 чтоб ушло минимум цифр)
Нужно использовать как можно большие цифры чтоб было меньше разрядов. Должно быть как минимум 6 цифр тк 5*9=45
1 разряд должен быть наименьшим из возможных поэтому разумно взять цифры. (последняя цифра должна быть наибольшей из всех то есть логично взять следующее число.
49999899999999999
и второе
49999900000000000
<span>Ответ:49999899999999999 и 49999900000000000</span>