Умножим все на 49
49x²-49x+12>0
найдем корни уравнения 49x²-49+12>0
d=49²-4*49*12=49
x=(49+-7)/98
x1=56/98=28/49=4/7
x2=42/98=21/49=3/7
применим метод интервалов.
см картинку
x∈(-∞;3/7)U(4/7;+∞)
√0.07=√0.01*7=√(0.1)²*7=√(0.1)² * √7=0.1√7
√0.0041=√0.0001*41=√(0.01)²*41=√(0.01)² * √41=0.01√41
Lg(5y²-2y+1)/3lg(4y²-5y+1)≤1/3*log(5)7/log(5)7
lg(5y²-2y+1)/lg(4y²-5y+1)≤1
ОДЗ
5y²-2y+1>0
D=4-20=-18<0,a>0⇒y∈(-∞;∞)
4y²-5y+1>0
D=25-16=9
y1=(5-3)/8=1/4
y2=(5+3)/8=1
y<1/4 U y>1
lg(4y²-5y+1)≠0
4y²-5y+1≠1
4y²-5y≠0
y(4y-5)≠0
y≠0 U y≠5/4
y∈(-∞;0) U (0;1/4) U (1;5/4) U (5/4;∞)
log(5y²-2y+1)/lg(4y²-5y+1) -1≤0
[lg(5y²-2y+1)-lg(4y²-5y+1)]/lg(4y²-5y+1)≤0
lg[(5y²-2y+1)/(4y²-5y+1)]/lg(4y²-5y+1)≤0
a){lg[(5y²-2y+1)/(4y²-5y+1)]≥0 (1)
{lg(4y²-5y+1)<0 (2)
(1)(5y²-2y+1)/(4y²-5y+1)≥1
(5y²-2y+1)/(4y²-5y+1) -1≥0
(5y²-2y+1-4y²+5y-1)/(4y²-5y+1)≥0
(y²+3y)/(4y²-5y+1)≥0
y(y+3)/[4(y-1/4)(y-1)≥0
y=0 y=-3 y=1/4 y=1
+ _ + _ +
-----------[-3]------------[0]-----------(1/4)----------(1)----------
y≤-3 U 0 ≤ y<1/4 U y>1
(2)lg(4y²-5y+1)<0
4y²-5y+1<1
4y²-5y<0
y(4y-5)<0
y=0 y=5/4
0<y<5/4
y∈(0;1/4) U (1;5/4)
б){lg[(5y²-2y+1)/(4y²-5y+1)]≤0 (3)
{lg(4y²-5y+1)>0 (4)
(3)-3≤y≤0 U 1/4<y<1
(4)y<0 U y>5/4
y∈[-3;0)
Ответ y∈[-3;0) U (0;1/4) U (1;5/4)