Каноническое уравнение окружности: (x-a)^2+(y-b)^2=R^2, где (a;b) - центр радиуса, R - радиус.
Ищем точку пересечение графиков:
{y=log2(x+1)
{y=5-x
log2(x+1)=5-x
Так как слева возрастающая функция, а справа убывающая, то возможен только один корень уравнения, его легко угадать, это x=3
y=5-3=2 => (3;2) - точка пересечения и центр радиуса окружности
=> (x-3)^2+(y-2)^2=0.25 - искомое уравнение окружности
Решение:
Обозначим за х-скорость грузовой машины,
за у-скорость легковой машины
Тогда:120/х-120/у=1
Второе уравнение будет иметь вид:
120/(х+у)=1,2
Решить данную систему уравнений:
120/х-120/у=1
120/(х+у)=1,2
Приведём второе уравнение к общему знаменателю получим:
120=1,2х+1,2у
1,2х=120-1,2у
х=(120-1,2у)/1,2
Подставим х в первое уравнение получим:
120/(120-1,2у)/1,2-120у=1
Я боюсь не успеть, поэтому подсказываю : нужно решить уравнение и найти у, а затем х.
А далее нужно 120 разделить на полученный х и находим ответ
Например,220...............
Сложить все величины.
Тогда получишь правильный ответ