Общий вид уравнения касательной имеет вид:
Посчитаем сразу значение функции в точке х0=2, т.е.
Производная данной функции(по правилу дифференцирования частности)
Найдем значение производной в точке х0=2
Искомая касательная:
Вот и всё
квадратичная функция, график - порабола, ветви вверх
Разложим выражение на множители:
3⁹ - 5³ = (3³)³ - 5³ = 27³ - 5³ =
по формуле сокращенного умножения (разность кубов):
= (27 - 5)(27² +27*5 + 5²) =
= 22 × (27² + 27*5 + 5²)
Один из множителей = 22 ⇒ выражение делится нацело на 22.
а+b = 9
ab = -12
(а-b)² = ?
По формулам сокращенного умножения :
(a - b)² = a² - 2ab + b² = a² + b² - 2ab
Подставим значение аb = -12 :
(a - b) ² = а² + b² - 2*(-12) = a²+ b² + 24
Нам неизвестно выражение (а² + b²) , найдем его :
(а+b)² = a² + 2ab + b² = (a²+ b²) + 2ab
Подставим значения а + b = 9 ; аb = -12 :
9² = а² + b² + 2 *(-12)
81 = a² + b² - 24
a² + b² = 81 + 24
a² + b² = 105
Следовательно:
(а-b)² = 105 + 24 = 129
Tg3x=0 ⇒3x=π/2+kπ,k∈Z;⇒x=π/6+kπ/3,k∈Z