Теорема: квадрат диагонали прямоугольного параллелепипеда = сумме квадратов трех его измерений
d²=a²+b²+c²
a=AB
b=Bc
c=AA₁
по условию АА₁=2√3, AD=6√2. AD²=AB²+BC²
AD=6 - лишнее условие
d²=(2√3)²+(6√2)²
d²=84
d=√84
Обозначим длину боковой стороны за x. Тогда длина основания равна x+7. Отсюда x+x+(x+7)=40, 3x=33, x=11. Тогда длины стороны равны 11, 11, 18.
Итак, АД= 9+6=15 и = ВД( диагонали) треугольник ВМД- прямоугольный по т.Пифагора найдем ВМ
ВМ=√15²-9²=√144=12см, высота = 12, треугольник АВМ- прямоугольный по т.Пифагора найдем АВ
АВ=√12²+6²=√180=6√5
боковая сторона = 6√5
A1 и а2 - стороны параллелограмма, соответсвующие высоты, опущенные на них h1 и h2
S= a1 * h1 или S= a2 * h2
значит a1 * h1 = a2 * h2
h2 = (a1 * h1)/a2 = 40*30/20 =60
Рисунок в файле.
Сделаем допостроение, где АА1=АС
т.к. АС=АА₁, СМ=МВ , тогда А₁В паралл. АМ и тогда А₁В перпенд А₁С
рассмотрим треуг АА₁В он прямоугольный и гипотенуза в 2 раза больше катета, соответственно проти этого катета лежит угол в 30 градусов.
но углы АВА₁ и ВАМ накрест лежащие , равны между собой. Соответственно ВАС= 90+30=120