1)35
2)-100
3)28
4) 46.7653718
27^2/3 – 16^1/4= (3³)^2/3 –(2^4)^1/4 = 3^6/3 -2^4/4 = 3²-2=9-2=7
OTBET: 7 D
если b : а = 1:2 ⇔ (a/b =2._,без дроби).
=1 -ab/(a²+b²) = 1 -(a/b)/((a/b)² +1) =1 -2/(4+1) =1 -2/5 =3/5.
или сразу
=a²(1 -b/a+(b/a)²) / a²(1+(b/a)²) = (1 -b/a+(b/a)²) / (1+(b/a)² )=
(1 -1/2+1/4)/(1+1/4) =(3/4)/(5/4) =3/5 =0,6.
или =(a/b -1+b/a)/(a/b +b/a) =(2 -1+1/2)/(2+1/2) =(3/2)/(5/2) =3/5.
(разделил одновременно числитель и знаменатель на a*b ).
-----------------------
Представить выражение в виде , где а, b и c - целые числа:
=(2x² -2x +7x -7 +4)/(x-1) =(2x(x-1) +7(x-1) +4)/(x-1) =2x +7 +4/(x-1).
a=2;b=7; c=4.
или по другому :
=(ax² -ax +bx-b +c)/(x-1) = (ax² +(b-a)x -(b -c))/(x-1).
{a =2 , b-a=5 ; b-c =3⇔{a=2 ;b=a+5; c=b-3 ⇔{a=2; b=7; c=7 -3 =4.
2x +7 +4/(x-1).
-----------------------
Определите, при каких натуральных n значения данных выражений являются целыми числами:
= (n² +2n +n+2 -4)/(n+2)= n+1 - 4/(n+2) ⇒n=2 (делители числа 4 : {± 1, ± 2, ± 4} , но здесь натуральные)
подставляем значения в уравнение: 5*1+p*1-3p=0; 5+p-3p=0; p-3p= -5; -2p-5; p=(-5):(-2)=2,5. Ответ: p=2,5.