Физ. яв. - северное сияние, листопад, закат, радуга, молния, наводнение, туман, град.
Физ. тело - Солнце, ложка, стул, тетрадь, Марс, самолёт, компьютер, телефон.
Физ. вещество. - молоко, камень, керосин.
Введём определения:
M, Vo и V – масса и скорости ракетки до и после удара в ЛСО, для определённости они направлены вправо;
m, vo и v – масса и скорости мячика до и после удара в ЛСО, для определённости: мячик всегда летит от ракетки вправо, вначале небыстро, а потом – быстрее;
Для учёта встречного к ракетке движения мячика, в качестве альтернативного условия – будем использовать знак минус перед vo.
u – скорость центра масс системы, которая не меняется, она, очевидно, направлена вправо (масса и скорость ракетки больше массы и скорости мячика);
V1 и V2 – скорости ракетки до и после удара в СЦМ, для определённости: сначала ракетка летит вправо на мячик, а после удара – влево от мячика;
v1 и v2 – скорости мячика до и после удара в СЦМ, для определённости: сначала мячик летит влево на ракетку, а после удара – вправо от ракетки;
Общий импульс системы: MVo + mvo ;
Центр масс движется со скоростью u, для которой из соображений общего импульса верно, что: (M+m)u = MVo + mvo ;
u = [ MVo + mvo ]/[M+m] ;
При переходах из ЛСО в СЦМ, получаем:
V1 = Vo – u = Vo – [ MVo + mvo ]/[M+m] = m(Vo–vo)/[M+m] ;
До удара по закону сохранения импульса в СЦМ: MV1 = mv1 ;
v1 = [M/m] V1 ;
После реального удара с частичной потерей энергии:
MV2 = mv2 ;
v2 = [M/m] V2 ;
Т.е.: v2/v1 = V2/V1 = β , или проще говоря, обе скорости уменьшатся одинаково, с некоторым β-коэффициентом ( β² –коэффициент потери энергии ) :
0 < β < 1 ;
В СЦМ после абсолютно упругого удара скорости просто бы развернулись (считаем удар лобовым), сохранившись по модулю, так чтобы импульс по прежнему был бы равен нолю. Но в данном случае, скорости и ракетки и мячика уменьшатся:
V2 = βV1 ;
V = u–V2 = u–βV1 ;
Потеря энергии ракетки:
∆Eк = [M/2] ( Vo² – V² ) = [M/2] ( Vo² – ( u – βV1 )² ) – квадратичная функция относительно β. Найдём экстремум:
( Vo² – ( u – βV1 )² )' = 2( u – βV1 ) V1 = 0 ;
βэкс = u/V1 = [ MVo + mvo ] / [ mVo – mvo ] = [ MVo/[mvo] + 1 ] / [ Vo/vo – 1 ] ;
Если мячик всё время движется направо, то:
βэкс = [ MVo/[mvo] + 1 ] / [ Vo/vo – 1 ] ≈ [ 2/0.06 + 1 ] / [ 5/3 – 1 ] ≈ 51.5 ;
При β=0 : ∆Eк = [M/2] ( Vo² – u² ) = [M/2](Vo–u)(Vo+u) =
= [M/2] V1 ( Vo + [ M Vo + m vo ]/[M+m] ) =
= [M/2] m(Vo–vo)/[M+m] ( 2MVo + m(Vo+vo) )/[M+m] =
= ( MVo + m(Vo+vo)/2 ) Mm(Vo–vo)/(M+m)² ;
При β=1 : ∆Eк = [M/2] ( Vo² – ( 2u – Vo )² ) = 2uM ( Vo – u ) = 2Mu V1 =
= 2 ( MVo + mvo ) mM(Vo–vo)/(M+m)² ;
При β=0 : ∆Eo = ( MVo + m(Vo+vo)/2 ) mM(Vo–vo)/(M+m)² ≈
≈ ( 2 + 0.02*4 )*0.008*2/0.42² ≈ 416/2205 ≈ 0.189 Дж ;
При β=1 : ∆E1 = 2 ( MVo + mvo ) mM(Vo–vo)/(M+m)² ≈
≈ 2 ( 2 + 0.06 )*0.008*2/0.42² ≈ 824/2205 ≈ 0.374 Дж ;
Так что вариант, когда мячик всё время движется вперёд с разгоном после удара – невозможен с потерей энергии ракетки в 0.5 Дж.
Если мячик сначала движется налево, а после удара – направо, то:
βэкс = [ MVo/[–mvo] + 1 ] / [ Vo/[–vo] – 1 ] ≈ [ –2/0.06 + 1 ] / [ –5/3 – 1 ] ≈ 12.125 ;
При β=0 : ∆Eo = ( MVo + m(Vo–vo)/2 ) mM(Vo+vo)/(M+m)² ≈
≈ ( 2 + 0.02 )*0.008*8/0.42² ≈ 1616/2205 ≈ 0.733 Дж ;
При β=1 : ∆E1 = 2 ( MVo – mvo ) mM(Vo+vo)/(M+m)² ≈
≈ 2 ( 2 – 0.06 )*0.008*8/0.42² ≈ 3104/2205 ≈ 1.41 Дж ;
Так что вариант, когда мячик сначала летит влево на ракетку, а потом после удара вправо от ракетки – тоже невозможен со значением в потере энергии в 0.5 Дж ! :–)
У нелепой задачи нет нормального решения :–)
*** отметьте, пожалуйста, это решение лучшим, чтобы сохранялась последовательность в рассуждениях.
Круговая частота равна ω = 2π/Т = 12,57 рад/сек.
Период колебаний равен 2π умноженное на квадратный корень из L/g
Значит Т² = 4π²L/g ⇒ L=T²g/4π² ≈ 0,06м
Ответ: 12,57 рад/сек; 0,06 метра.