Y = a*x^2 + b*x + c
если a > 0 ==> вверх
если a < 0 ==> вниз
y = - 3*x^2 + 7x - 1,3
- 3 < 0 ==> вниз
Y = 4x⁴ - 2x² + 3
Решение
1. Находим интервалы возрастания и убывания
Первая производная.
f'(x) = 16x³ - 4x
Находим нули функции. Для этого приравниваем производную к нулю
16x³ - 4x = 0
Откуда:
x₁ = -1/2
x₂ = 0
x₃= 1/2
(-∞ ;-1/2) f'(x) < 0 функция убывает
(-1/2; 0) f'(x) > 0 функция возрастает
(0; 1/2) f'(x) < 0 функция убывает
<span>(1/2; +∞) f'(x) > 0 функция возрастает</span>
<span>В окрестности точки x = -1/2 производная функции меняет знак с (-) на (+). Следовательно, точка x = -1/2 - точка минимума. В окрестности точки x = 0 производная функции меняет знак с (+) на (-). Следовательно, точка x = 0 - точка максимума. В окрестности точки x = 1/2 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1/2 - точка минимума.
</span>
С18/с22=396 396с/с
и это равно396