Рисунок к условию задачи прилагается. Согласно условию, стороны , и BD - общая для треугольников ABD и CDB, то треугольники ABD и CBD подобны по третьему признаку равенства треугольников.
Так как треугольники равны, то их соответствующие углы тоже равны, т.е.
угол bcd = угол bad=40 градусов
Длина спуска и подъёма одинакова и равна S км. Тогда длина всей дороги со спуском и подъёмом равна 2S км .
Длина ровной дороги в 1,5 раза длиннее, чем 2S, то есть равна
1,5·2S=3S км .
Скорость девочки по ровной дороге равна V₁=х км/час.
Тогда время, затраченное на прохождение ровной дороги равно
t₁=3S/x =3·(S/x)(час).
Скорость девочки на спуске в 2 раза больше, чем по ровной дороге, то есть равна V₂=2x (км/час).
Время, за которое девочка спустится, равно t₂=S/V₂=S/2x (час) .
Скорость девочки на подъёме в 1,5 раза меньше, чем по ровной дороге, то есть равна V₃=x/1,5=2x/3 (км/час) .
Время, за которое девочка совершит подъём, равно
t₃=S/V₃=S/(2x/3)=3S/2x=3·(S/2x) (час)
Время спуска и подъёма равно
t₂+t₃=S/2x+3(S/2x)=4(S/2x)=2(S/x) (час)
Сравним это с t₁=3(S/x) .
Время, затраченное на прохождение ровной дороги,
больше в t₁/(t₂+t₃)=3/2=1,5 раза.
Время ,затраченное на прохождение дороги со спуском и подъёмом,
меньше в (t₂+t₃)/t₁=2/3 раза.
Jkggghgggggghujggghvghhfgghhhhh
Если нужно узнать расстояние, пройденное лодкой , то 12*2= 24 км