Из вершины меньшего основания проводим перпендикуляры.
Рассматриваем два получившихся прямоугольных треугольника.
У них два катета равны (это перпендикуляры), гипотенузы равны (равные стороны равнобокой трапеции). По следствию из признака равенства треугольников (3-й признак - равенство треугольников по трем сторонам), два прямоугольных треугольника равны по гипотенузе и катету. А в равных треугольниках равны и соответствующие элементы.
Таким образом, углы при основании равны.
М=середина АС, значит ее координаты найдем как среднее арифметическое координат точек А и С
М(-1;-1;-1)
АС=(8;12;-8)
BM=(-5;-3;1)
Cos(AC;BM)=(AC*BM)/(/AC//BM/) в числителе - скалярное произведение, в знаменателе - модули, то есть длины векторов
AC*BM=-40-36-8=-84
/AC/=√(64+144+64)=√272
/BM/=√(25+9+1)=√35
Cos(AC;BM)=-84/(√272√35)=-84/(4√17√7√5)=-21/√595
∠(AC;BM)=arccos(-21/√595) -искомый угол, значение нетабличное, по другому не запишешь
Ответ: arccos(-21/√595)
В треугольнике АВС , где угол С=90,гипотенуза равна 13,катет =12,найдите оставшийся катет .
Дано:
АВС-треугольник,угол С=90
АС=12
АВ=13
Найти:ВС
Решение
АС²=ВС²+АВ²-по теореме Пифагора
13²=ВС²+12²
ВС²=13²-12²
ВС²=169-144
ВС²=25
ВС=5
Ответ:5
У параллелограмма сумма углов при боковых сторонах =180 гр. и противолеж углы равны. Значит угол D=180-37=143 гр.
угол Д=В=143 гр.
угол С=А=37 гр.