Ответ:
Квадратное уравнение в общем виде:
ax²+bx+c=0, где по теореме Виета x1+x2=-b/a, x1*x2=c/a (x1 и х2 - корни уравнения).
Если а=1 (уравнение приведенное), то в нашем случае получим:
0.5+0.25=-0.75b или -3/4b
0.5*0.25=0.125c или 1/8с
х°2-3/4х+1/8=0
D=(-3/4)°2-4*1*1/8=9/16-1/2=1/16
Вот ответы, 1,2 точные ответы, а вот насчёт 3 не уверен, но думаю правильно
(√97 +2)²= √97² + 2·2·√97 +2²=97 +4√97 +4 = 101 +4√97
А) 2cos(π/2-x)=tgx, cos(π/2-x)=sinx
2sinx=tgx, tgx=sinx/cosx ⇒ sinx=tgxcosx
2tgxcosx=tgx
2tgxcosx-tgx=0
tgx(2cosx-1)=0
1) tgx=0 ⇒ x=πn, n∈Z
2)2cosx-1=0
2cosx=1
cosx=1/2 ⇒ x=(плюс-минус)π/3+2πn, n∈Z
Ответ: x=πn, n∈Z; x=(плюс-минус)π/3+2πn, n∈Z
б) x∈[-2π;-π/2]
Данному промежутку принадлежат корни: -2π, -5π/3, -π
Так как логарифм б по основанию а равно 2, то б равно а в квадрате, тогда log(ab⁴)по основанию а=log(a(a²)⁴) по основанию а=loga⁹ по основанию а=9.
Ответ: 9.
а) 2cos(π/2+x)=√3tgx, cos(π/2+x)=-sinx
-2sinx=√3tgx, tgx=six/cosx ⇒ sinx=tgxcosx
-2tgxcosx=√3tgx
-2tgxcosx-√3tgx=0
tgx(-2cosx-√3)=0
1) tgx=0 ⇒ x=πn, n∈Z
2) -2cosx-√3=0
-2cosx=√3
cosx=-√3/2
x=(плюс-минус)5π/6+2πn, n∈Z
Ответ: x=πn, n∈Z; x=(плюс-минус)5π/6+2πn, n∈Z
б) x∈[-3π;-3π/2]
Данному промежутку принадлежат корни: -3π, -13π/6, -2π