IABI=√(1+3)²+(-2-y)²)
√(16+(-2-y)²)=5
16+(-2-y)²=25
(-2-y)²=9
1) -2-y=3 2) -2-y=-3
y=-5 y=1
A(-3 ;-5) или А(-3; 1)
12+0,5x=0
0,5x=-12
x=12/0.5
x=6
А)!/(3х-2)=4-1
!/(3х-2)=3
3х-2=9
3х=9+2
3х=11
х=11/3=3 2/3
б)!/(3-0.4х)=1-5
!/(3-0.4х)=-4
3-0.4х=16
-0.4х=13
х=13÷(-0.4)
х=-32.5
в)
3!/0.7х=1
!/0.7х=1/3
0.7х=1/9
х=1/9÷7/10
х=1/9×10/7
х=10/63
г)
4!/-х=-8
!/-х=-2
-х=4
х=-4
д)
2!/(2+0.6х)=6
!/(2+0.6х)=3
2+0.6х=9
0.6х=7
х=7÷0.6
х=7÷3/5
х=7×5/3
х=35/3=11 2/3
е)
3!/(х-1)=-1
!/(х-1)=-1/3
х-1=1/9
х=1/9+1
х=1 1/9
2sin^2x-5sin 2x cos 2x+2cos^2x=0;2tq²2x - 5tq2x +2 =0 ;
tq²2x - (1/2+2)tq2x +1 =0 ;
[ tq2x =1/2 ; tq2x =2 .
[ 2x=arctq(1/2) +πn ; [ 2x=arctq2 +πn , n∈Z .
x₁=(1/2)*arctq(1/2) +(π/2)*n , n∈Z ; x₂=(1/2)*arctq2 +(π/2)*n, n∈Z .
ответ : (1/2)*arctq(1/2) +(π/2)*n , (1/2)*arctq2 +(π/2)*n, n∈Z .
12,7
Абсолютная погрешность = 12,7 - 12,657 = 0,043