1. Тут и решать нечего. раскладываем 54 как 9*6. Из 9 можно извлечь корень. Ответ: три корня из шести.
2. Корень не трогаем, считаем цифры. -7 корней из семи.
3(1-x)-(2-x)≥5
3-3x-2+x≥5
-2x +1≥5
-2x≥4
x≤-2
x∈(-∞;-2]
sqrt(1+1/a^2+1/(a+1)^2) = sqrt((a^4+2a^3+3a^2+2a+1)/(a^2*(a+1)^2)) = sqrt((a^2+a+1)^2/(a^2*(a+1)^2)) = (a^2+a+1)/(a(a+1)) = 1+(1/(a(a+1)) 1+ 1/a-1/(a+1)
Значит
sqrt(1 + 1/1^2 + 1/2^2) + sqrt(1 + 1/2^2+1/3^2 ) + ... + sqrt(1 + 1/99^2 + 1/100^2 ) = 99 + (1/1+1/2+...+1/99) - (1/2+1/3+...+1/100) = 99+1-1/100 = 999/100
Bn=B1*q^n-1
b4=4*(0,5)^3
b4=0,5
Решение!!!!!!!!!!!!1111111111