1)2p+3(m+n)= 3*2+3*8=30
2)p(n+m)= 3*8=24
3)2(m+n):m+n-2p=2*8:8-6=-4
4)5:m+n-2:p=5/8-2/3=-1/24
{3x-y=10
{x^2+xy-y^2=20
Из уравнения 1 вырахим переменную у
{y=3x-10
{x^2+xy-y^2=20
Подставим вместо переменной у найденное выражение
{y=3x-10
{x^2+x(3x-10)-(3x-10)^2=20
Решаем второе уравнение.
x²+x(3x-10)-(3x-10)²=20
Раскрываем скобки
x²+
3x²-<u>10x</u>-
9x²+<u>60x</u>-100=20
Приводим подобные члены(подчеркнул вам)
-5х²+50х-120=0|:(-5)
x²-10x+24=0
Находим дискриминант
D=b²-4ac=(-10)²-4*1*24=4; √D=2
Дискриминант положителен, значит уравнение имеет 2 корня.
Найдем y.
<span>Ответ: (4;2), (6;8).</span>
Из первого уравнения системы : 2x^2 = 7 - y^2, x^2 = (7-y^2)/2
Во втором уравнении заменяем x^2 :
(2y - 21 + 3y^2)*(y-a) = 0 - верно в случае y-a = 0 или 3y^2 + 2y - 21 = 0
Квадратное уравнение 3y^2 + 2y - 21 = 0 решается следующим образом :
D = 4 - 4*3*-21 = 4 + 3 * 84 = 256
y1 = (-2 + 16)/6 = 2 1/3
y2 = (-2 - 16)/6 = -3
x1,2 = +/- sqrt ( 7 - y1^2)/2
x3,4 = +/- sqrt ( 7 - y2^2)/2
Имеем 4 решения. Однако есть еще уравнение y-a = 0.
Оно решается как y = a.
Если a = y1 или a = y2, то система будет иметь 4 различных решения, в любом другом случае система будет иметь более 4 различных решений.
Ответ : a = 2 1/3 или a = -3.
7b-14^2÷42×b^2-21b
-14b-14^2÷42×b^2
-b×(14+14^2÷42×b)
-b×(14+196÷42b)
-b×(14+14÷3b)
-b×1÷3×(42+14b)
-b×1÷3×14×(3+b)
-14÷3b×(3+b)
напиши в виде дроби просто тут такой функции нету