<em>1.Лекарственное сырье нужно собирать только в сухую погоду и сушить в тени, в сухом, хорошо проветриваемом месте.</em>
Людина це найважча істота на планеті.Ми намагаємося вивчити самих себе що б знати що і як у нас в організмі і не пошкодити які небудь внутрішні органи, а то люди раніше вмирал щодня
<span />
Голосеменны́е расте́ния (лат. Gymnospérmae) — древняя группа семенных растений, появившаяся в верхнем девоне, около 370 млн лет назад.
Выражение «голосеменные», впервые использованное русским ботаником А. Н. Бекетовым, указывает на главную отличительную черту этих растений, a именно на то, что семяпочки, а затем и развивающиеся из них семена не имеют, в отличие от покрытосеменных, замкнутого вместилища. Завязь обычно имеет вид простой чешуи, на которой сидит одна или несколько семяпочек; иногда же и эта чешуя не развивается.
Ранее голосеменные растения выделялись в специальный класс Gymnospermae, вначале в рамках семенных растений (в составе отдела Spermatophyta, 1882—1952), позже — в составе сосудистых растений (в составе отдела Tracheophyta, 1950—1981). Этот класс включал хвойные и подобные им растения, в том числе несколько групп вымерших растений, известных только по ископаемым останкам.
Несмотря на то, что голосеменные растения явным образом отличны от других групп высших растений (папоротникообразных и цветковых), ископаемые останки длительное время служили доказательством того, что покрытосеменные произошли от голосеменных предков, что делало таксон голосеменных парафилетичным (современная кладистика пытается определять лишь такие таксоны, которые являлись бы монофилетическими — с прослеживающейся привязкой к общему предку и включающие всех потомков этого общего предка). Вместе с тем, некоторые исследования ДНК показывают, что голосеменные, возможно, являются монофилетической группой.
Современные семенные растения обычно разделяют на пять таксонов одного ранга (в современных публикациях чаще в качестве такого ранга используют класс), при этом по отношению к совокупности четырёх групп нецветковых растений для отделения их от группы цветковых (покрытосеменных) растений применяют термин «голосеменные», не рассматривая при этом его в качестве таксона.
<span>Строение молекулы белка. макромолекулы белка имеют вид шариков (глобул). каждому белку присущ определенный, всегда постоянный характер укладки. В сложной структуре белковой макромолекулы различают несколько уровней организации. Пер-вым, наиболее простым из них является сама полипептидная цепь, т. е. цепь аминокислотных звеньев, связанных между собой пептидными связями. Эта структура называется первичной структурой белка; в ней все связи ковалентные, т. е. самые прочные химические связи. Следующим, более высоким уровнем организации является вторичная структура, где белковая нить закручивается в виде спирали. Витки спирали располагаются тесно, и между атомами и аминокислотными радикалами, нахо-дящимися на соседних витках, возникает притяжение. В частности, между пептидными связями, расположенными на соседних витках, образуются водородные связи (между NH- и СО- группами). Водородные связи значительно слабее кова-лентных, но, повторенные многократно, они дают прочное сцеп-ление. Полипептидная спираль, «прошитая» многочисленными водородными связями, представляет достаточно устойчивую структуру. Вторичная структура белка подвергается дальнейшей укладке. Она сворачивается причудливо, но вполне определенно и у каждого белка строго специфично. В результате возникает уникальная конфигурация, называемая третичной структурой белка. Связи, поддерживающие третичную структуру, еще сла-бее водородных. Они называются гидрофобными. Это -- силы сцепления между неполярными молекулами или неполярными радикалами. Такие радикалы встречаются у ряда аминокислот. У некоторых белков в поддержании белковой макромолекулы суще-ственную роль играют так называемые S--S (эс--эс связи) -- прочные ковалентные связи, возникающие между отдаленными участками полипептидной цепи. В молекуле белка аминокислот-ные остатки соединены так называемой пептидной связью. Полная последовательность аминокислотных остатков в такой цепи называется первичной структурой белка. В составе белка обычно имеются как кислые, так и щелочные аминокислоты, так что белковая молекула имеет и положительные, и отрицательные заряды. Значение рН, при котором количество отрицательных зарядов равно количеству положительных, называется изоэлектрической точкой белка. Обычно белковая цепочка складывается в более сложные структуры. Кислород группы C=O может образовывать водородную связь с водородом группы N-H, расположенной в другой аминокислоте. За счет таких водородных связей формируется вторичная структура белка. Одна из разно-видностей вторичной структуры - б-спираль. В ней каждый кислород С=О-группы связан с водородом 4-й по ходу спирали NH-группы. На один виток спирали приходится 3,6 аминокислот-ных остатка, шаг спирали составляет 0,54 нм.Во многих белках имеется т. н. в-структура, или в-слой, в ней полипептидные цепочки почти полностью развернуты, их отдельные участки своими группами -СО- и -NH- образуют водородные связи с другими участками той же цепочки или соседней полипептидной цепи.</span>
Ответ: 25%
Если спросят какой процент мальчиков со здоровыми зубами, то ответ 50%, а если сколько девочек, то 0%