Ну смотри,
в основании прямоугольник, на основание уйдет 7+14=21 см ленты, а так как у параллелепипеда 2 основание (нижнее и верхнее), то уйдет в 2 раза больше, т.е 42 см.
рассмотрим боковые грани - у параллелепипеда их 4, а высота коробки 10 см, так вот, нужно 10*4 =40 см.
в Итоге, если сложим 40+42 = 82 см понадобиться чтобы обмотать только коробку.
а так как еще на бант 36, то 82+36=118 см нужно ленты
<h3>▪Рассмотрим Δ ABC - осевое сечение данного конуса ( равнобедренный треугольник ) , тогда точка O - центр вписанного шара , точка Н - центр основания конуса, ОН = OM = ON = r , AH = HC = R , ∠А = а - искомый угол между образующей и основанием конуса.</h3><h3>▪Точка О является центром вписанной окружности в Δ АВС ⇒ точка О - точка пересечения биссектрис ⇒ ∠ВАО = ∠НАО = а/2 </h3><h3>▪В ΔAHB: BH = AH•tga = R•tga</h3><h3> B ΔHAO: OH = AH•tg(a/2) = R•tg(a/2)</h3><h3>▪ Vконуса = ( п•AH²•BH )/3 = ( пR²•R•tga )/3 = ( пR³tga )/3</h3><h3> Vшара = ( 4п•ОН³ )/3 = ( 4п•R³•tg³(a/2) )/3</h3><h3>▪ Vконуса / Vшара = tga / 4tg³(a/2) ; tga = 2tg(a/2) / 1 - tg²(a/2) ⇒ Vконуса / Vшара = 2tg(a/2) / 4tg³(a/2)•( 1 - tg²(a/2) ) = 1 / 2tg²(a/2) - 2tg⁴(a/2) = k</h3><h3> 2k•tg⁴(a/2) - 2k•tg²(a/2) + 1 = 0</h3><h3> D = ( 2k )² - 4•2k = 4k² - 8k = 4•( k² - 2k )</h3><h3> 4•( k² - 2k ) ≥ 0 ⇒ k ≥ 2</h3><h3> tg²(a/2) = ( 2k +- 2√(k² - 2k) )/4k = ( k +- √(k² - 2k) )/ 2k ⇒ k = 9/4 ⇒</h3><h3> tg₁²(a/2) = 2/3 ⇒ tg(a/2) = √(2/3) ≈ 0,82</h3><h3> tg₂²(a/2) = 1/3 ⇒ tg(a/2) = √(1/3) ≈ 0,58</h3><h3> Из условия следует, что tg(a/2) = r / R < 0,6 ⇒ tg(a/2) = √3/3 ⇒ a/2 = п/6 ⇒ а = п/3 = 60° </h3><h3> ΔАВС - равносторонний , AB = BC = AC ⇒ L = 2R = D , r = √3R/3</h3><h3><em><u>ОТВЕТ: 60°</u></em></h3><h3 />
Sтрапеции равна произведению полусуммы её оснований на высоту.
1. Проведём высоту от меньшего основания к большему.
2. В полученном треугольнике квадрат гипотенузы(большая сторона, равная 15см) будет равен сумме квадратов катетов(первый катет - высота, которую нужно найти, второй - часть большего основания.)
3. Высота будет равна меньшей боковой стороне, значит первый катет будет равен 18-9=9см.
с2=a2+b2
225см=x2+81
x2=225-81
x2=144
x=12, высота трапеции равна 12см.
Sтрапеции=0,5(9+18)*12=13,5*12=162см2
Вот всё решение с чертежом и дано
Найдем диагональ ВД ;
Она равна АВ^2+АД^2=ВД^2;
Откуда ВД=5\/2;
Находим КД^2=КВ^2+ВД^2;
КД^2=36+50=86;
КД~9,3;
АК^2=КС^2=6^2+5^2=61;
Откуда АК= КС~7,8;