Касательная к параболе, параллельная прямой у = 2х - 3, имеет угловой коэффициент 2, что равно производной кривой у = х².
y' = 2x = 2. Отсюда находим точку, в которой касательная к параболе параллельна заданной прямой. xo = 2/2 = 1. Значение функции в этой точке равно 1² = 1.
Уравнение касательной:
у = y'(xo)*(x - xo) + yo = 2(х - 1) + 1 = 2х- 2 + 1 = 2х - 1.
Расстояние между этими прямыми и есть искомое наименьшее расстояние между точками параболы y=x² и прямой y=2x-3.
Если уравнения представить в общем виде:
2х -у - 3 = 0 и 2х - у - 1, то искомое расстояние определяется по формуле: d = |C2 - C1)/√(A² + B²) = |-3-(-1)|/√(4 + 1) = 2/√5.
Ответ: квадрат расстояния равен 4/5 = 0,8.
Y - ( 2/9 ) y = 4 ( 2/3 ) ;
( 7/9 ) y = 14/3 ;
( 7/9 ) y = 42/9 ;
7y = 42 ;
Y = 42 : 7 ;
Y = 6
9 а втарое 40 я так думаю , но не знаю точною
1) 0,7*4,5=3,15 км - прошли по лесу
2) 5,07-3,15=1,92 км - прошли по болоту
3) 1,92:0,8=2,4 км/ч - скорость по болоту