-x=6582
x=-6582
________________
32, 34, 36, 38
всё)0)))))))
1) Если x+a < 0, то есть x < -a, то |x+a| = -x-a
x^2 + 2ax + 1 > a(-x-a)
x^2 + 2ax + 1 + ax + a^2 > 0
x^2 + 3ax + (a^2+1) > 0
D = (3a)^2 - 4(a^2+1) = 5a^2 - 4
1) а) Если D < 0, то есть a^2 < 4/5, то a € (-2√5/5; 2√5/5), тогда неравенство верно для всех x < -a.
1) б) Если a = -2√5/5, то x = -3a/2 = 3√5/5 > -a, не подходит.
1) в) Если a = 2√5/5, то x = -3a/2 = -3√5/5 < -a, подходит.
1) г) Если a^2 > 4/5, то есть a € (-oo; -2√5/5) U (2√5/5; +oo), то:
x1 = (-3a - √(5a^2-4) ) / 2
x2 = (-3a + √(5a^2-4) ) / 2
Тогда x € (-oo; x1) U (x2; +oo).
Но из них подходят только те, для которых x < -a
2) Если x + a = 0, то есть x = - a, то |x+a| = 0
x^2 + 2ax + 1 > 0
D = 4a^2 - 4 = 4(a^2 - 1)
2) а) Если D < 0, то есть a^2-1 < 0, то a € (-1; 1), тогда неравенство верно для x = -a.
2) б) Если a = -1 или a = 1, то неравенство неверно для x = 1 или x = -1.
2) в) Если a^2-1 >0, то есть a € (-oo; -1) U (1; +oo), то:
x1 = (-2a - 2√(a^2-1) ) / 2 = -a - √(a^2-1)
x2 = -a + √(a^2-1)
Тогда x € (-oo; x1) U (x2; +oo).
Но из них подходят только те, для которвх x = -a.
3) Если x+a > 0, то есть x > -a, то |x+a| = x+a
x^2 + 2ax + 1 > a(x+a)
x^2 + 2ax + 1 - ax - a^2 > 0
x^2 + ax + (1-a^2) > 0
D = a^2 - 4(1-a^2) = 5a^2 - 4
Дискриминант получился такой же.
3) а) Если D < 0, то есть a^2 < 4/5, то a € (-2√5/5; 2√5/5), тогда неравенство верно при любом x > -a
3) б) Если a = -2√5/5, то x = -a/2 = √5/5 < -a, не подходит.
3) в) Если a = 2√5/5, то x = -a/2 = -√5/5 > -a, подходит.
3) г) Если a^2 > 4/5, то есть a € (-oo; -2√5/5) U (2√5/5; +oo), то:
x1 = (-a - √(5a^2-4) ) / 2
x2 = (-a + √(5a^2-4) ) / 2
Тогда x € (-oo; x1) U (x1; +oo).
Но из них подходят только те, для которых x > -a.
Вот тебе два вида собачки на координатной плоскости.
Собачки разные.
X+y=20
2x+4y=52
y=20-x
2x+4*(20-x)=52
2x+80-4x=52
2x-4x=52-80
-2x=-28
x=-28/(-2)
x=14 кур
у=20-14=6 свиней