А+М=16 конфет
М+Н=19 конфет
А+Н=21 конфета
Если взять А+М+М+Н=16+19=35 конфет,затем отнимаем А+Н , а это 35-21=14 конфет это если М+М,а значит 14:2=7 конфет у Марины.Потом 16 - 7=9 конфет у Алисы,а 21-9=12 конфет у Николь.
7+9+12=28 конфет всего
<span>В Древнем Китае уже пользовались десятичной системой мер, обозначали дробь словами, используя меры длины чи: цуни, доли, порядковые, шерстинки, тончайшие, паутинки. Дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались дроби на протяжении двух веков, а в V веке китайский ученый Цзю-Чун-Чжи принял за единицу не чи, а чжан = 10 чи, тогда эта дробь выглядела так: 2 чжана, 1 чи, 3 цуня, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0 паутинок.
</span><span>Предшественниками десятичных дробей являлись шестидесятеричные дроби древних вавилонян. Некоторые элементы десятичной дроби встречаются в трудах многих ученых Европы в 12, 13, 14 веках.
</span><span>Десятичную дробь с помощью цифр и определенных знаков попытался записать арабский математик ал-Уклисиди в X веке. Свои мысли по этому поводу он выразил в "Книге разделов об индийской арифметике".
</span><span>В XV веке, в Узбекистане, вблизи города Самарканда жил математик и астроном Джемшид Гиясэддин ал-Каши (дата рождения неизвестна) . Он наблюдал за движением звезд, планет и Солнца, в этой работе ему необходимы были десятичные дроби. Ал-Каши написал книгу "Ключ к арифметике" (была издана в 1424 году) , в которой он показал запись дроби в одну строку числами в десятичной системе и дал правила действия с ними. Ученый пользовался несколькими способами написания дроби: то он применял вертикальную черту, то чернила черного и красного цветов. Но этот труд до европейских ученых своевременно не дошел.
</span><span>Примерно в это же время математики Европы также пытались найти удобную запись десятичной дроби. В книге "Математический канон" французского математика Ф. Виета (1540-1603) десятичная дробь записана так 2 135436 - дробная часть и подчеркивалась и записывалась выше строки целой части числа.
</span>В 1585 г. , независимо от ал-Каши, фламандский ученый Симон Стевин (1548-1620) сделал важное открытие, о чем написал в своей книге "Десятая" (на французском языке "De Thiende, La Disme"). Эта маленькая работа (всего 7 страниц) содержала объяснение записи и правил действий с десятичными дробями. Он писал цифры дробного числа в одну строку с цифрами целого числа, при этом нумеруя их. Например, число 12,761 записывалось так: 12076112
или число 0,3752 записывалось так: <span>3752.
</span>Именно Стевина и считают изобретателем десятичных дробей.
Запятая в записи дробей впервые встречается в 1592г. , а в 1617г. шотландский математик Джон Непер предложил отделять десятичные знаки от целого числа либо запятой, либо точкой.
Современную запись, т. е. отделение целой части запятой, предложил Кеплер (1571) - (1630 гг.) .
<span>В странах, где говорят по-английски (Англия, США, Канада и др.) , и сейчас вместо запятой пишут точку, например: 2.3 и читают: два точка три.</span>
Ответ:
115 оборотов
Пошаговое объяснение:
длина окружности колеса=4/5 м, т.е. 0,8 м
колесо сделает один оборот и будет пройдено 0,8 м, значит, нужно узнать сколько раз 0,8 м уложится в 92 м, т.е. 92÷0,8=115